
On-line Hierarchical Graph Drawing

Stephen C. North and Gordon Woodhull

north,gordon@research.att.com
AT&T Labs - Research
180 Park Ave. Bldg. 103

Florham Park, New Jersey 07932-0971 (U.S.A.)

Abstract. We propose a heuristic for dynamic hierarchical graph drawing. Ap-
plications include incremental graph browsing and editing, display of dynamic
data structures and networks, and browsing large graphs. The heuristic is an on-
line interpretation of the static layout algorithm of Sugiyama, Togawa and Toda. It
incorporates topological and geometric information with the objective of making
layout animations that are incrementally stable and readable through long editing
sequences. We measured the performance of a prototype implementation.

1 Introduction

Graph layout is effective for visualizing relationships between objects. Static layout
techniques are well understood, but some applications display graphs that change. Ex-
amples include:

– interactive graph editors
– displays of intrinsically dynamic graphs, such as Internet router BGP announce-

ments, or data structures in a running program
– browsers for large graphs based on adjustable subgraphs [10]

The browsing application is motivated by the need for better techniques for visu-
alizing massive graphs [14]. For example, a finite state machine for continuous speech
recognition can have more than5 � 106 transitions. Graphs of Internet structures and
biological databases can be even larger. Static layout of large general graphs does not
seem feasible: even when the layout computation is tractable, it is difficult for a hu-
man to make sense of many thousands of objects unless they are arranged in a regular,
predictable structure and it does not seem possible to do this for arbitrary graphs. A
helpful alternative could be to show the neighborhood around a movable focus node, or
a simplification of the base graph, adjusted interactively.

Informative dynamic graph displays should direct attention to changes while also
revealing the graph’s global structure. When static layout algorithms based on global
optimization are employed, insertion or deletion of even one node or edge can dramat-
ically change the layout. Such instable changes disrupt a user’s sense of context, and
are uninformative because they do not direct attention to changes in structure in the
underlying graph [9]. An incremental approach is needed.

Hierarchical drawings are often useful in practice. They seem to provide a good
match between visual perception and common data analysis tasks such as identifying

ancestor-descendant relationships or locating articulation points and bridges. Efficient
hierarchical layout algorithms have been devised. Dynamic hierarchical drawing po-
tentially has many of the same benefits, and would be useful in many situations where
static layout is being employed. We propose a heuristic, Dynadag, that maintains on-line
hierarchical graph drawings.

2 Layout server model

Dynadag uses a client-server model with communication based on a shared, managed
graph that holds geometric coordinates and other layout attributes. Client and server
send changes to each other viainsert, modify, anddelete subgraphsof the shared graph.
The order of these changes is recorded when objects are inserted into subgraphs. The
client accumulates changes in the subgraphs and eventually calls the server’sProcess
method to obtain a new layout. The server further appends to themodify subgraphas
it generates a new layout. After theProcessmethod finishes, the client may update its
display to reflect the new state of the shared graph.

Table 1 lists graph object layout attributes. Coordinates are dimensionless and com-
puted to a client-specified precision (e.g.nearest pixel or millimeter). Position attributes
are optional in requests. If an insert or modify request does not have a valid position, the
server may arbitrarily determine the object’s placement. On the other other hand, when
the client gives a position (such as when editing a graph interactively, or importing a
saved diagram), it is a strong indication to place the object as closely as possible to the
request coordinate. Every object also has a flag to request pinning or fixing its position.
Thus, some graph objects may be placed manually while others are being managed
automatically. Edges can also be given a minimum length and a weight indicating the
cost of stretching it. The client further controls the spacing of objects via the separation
parameter, which states a minimum horizontal and vertical distance.

The insert-modify-delete subgraphmechanism allows the client to make large or
small changes to the managed graph. For instance, a client may load an entire external
graph into theinsert subgraphbefore invoking the server’sProcessmethod, resulting in
a globally optimized layout. Or, a large subgraph may be selected manually and its lay-
out re-computed. At the other extreme, an on-line editor providing direct manipulation
may call theProcessmethod after every operation.

The change-subgraph interface between clients and servers makes almost no as-
sumptions about how each behaves, and supports multiple layout algorithms. A server
is assumed only to make a best effort to process requests and generate a new layout.
It is allowed to modify or even ignore requests incompatible with its algorithm. For
example, it could align nodes and edges to grid coordinates, or reject non-planar edges
or parallel multi-edges. Servers are not responsible for graphical effects such as in-
betweening or fading. So animation techniques such as those of of Eades and Friedrich
[8] are complementary to our proposal. A significant limitation is that our system does
not exploit look-ahead, though doubtless it could produce better off-line animations.

3 Dynadag Heuristic

Most hierarchical graph layout programs use variants of a well-known batch heuristic
due to Sugiyama, Tagawa and Toda [16]. This heuristic (STT) draws directed graphs in
phases that reduce the search space by solving sub-problems that optimize objectives
such as total edge length and crossing number, subject to constraints that edges point
downward, nodes not overlap, etc.

The phases of STT are:

1. convert input graph into a directed acyclic graph (DAG) by reversing any cyclic
edges

2. assign nodes to discrete levels (ranks),e.g. placing root nodes on level 0, their
immediate descendants on level 1, etc.

3. convert edges that span multiple levels into chains of model nodes and edges be-
tween adjacent levels

4. assign the order of nodes in levels to avoid crossings
5. assign geometric coordinates to nodes and edges, keeping edges (represented as

polylines or splines) short and avoiding bends

This ordering of phases prioritizes the aesthetic properties of the resulting layouts.
For example, computing a level assignment before determining edge crossings reflects a
decision that emphasizing flow is more important than avoiding crossings. Adopting the
aesthetic priorities of STT, our dynamic version has the same phases. STT readily lends
itself to this modification because each phase depends only on limited information com-
puted by previous phases, and because we can maintain its framework of topological
and geometric constraints incrementally as described here.

Dynadag combines the static layout aesthetics of STT and decisions about how
to make on-line layouts stable. Measuring how well a dynamic diagram preserves a
user’s “mental map” is the topic of ongoing research. Without a firm foundation of
experimental studies to rely on, we simply assume that basic geometric and topological
properties contribute to the a layout’s visual stability and readability. Of course, other
things being equal, a drawing is more readable when its edges are short and don’t have
many crossings. These goals often conflict with obvious measures of stability: objects
should not move far, and neither the sequence of nodes within a hierarchical level nor
the angular order of edges incident on a given node should change much. Because these
measures are not comparable, and are handled by different parts of the algorithm, they
are not combined into any sort of unified layout quality or stability metrics. We admit
that our notion of stability is purely heuristic.

3.1 Main algorithm

Dynadag maintains an internalmodel graphthat satisfies the one-level edge constraint
of STT phase three, and holds internal information such as the integer rank assignments
of nodes. It also stores the model graph’s nodes in a two-dimensional array (orconfigu-
ration) for efficient access. Dynadag’sProcessor main work procedure applies the STT
phases incrementally. Each phase examines the insert, modify, and delete subgraphs

Value Type Explanation

G = (V;E) graph objectgraph
u; v; w; : : : 2 V node object node
e; f; : : : 2 E edge object edge
�(G) coord min node separation
Li;j node object jth node inith level
rx,ry float precision
�(v) integer level (rank) assignment
X(v); Y (v) coord position of node center
X̂(v); Ŷ (v) coord client node position request
X 0(v); Y 0(v) coord previous node position
B(v) coord node shape bounding box
fixed(v) boolean node movable
tail(e); head(e) node object endpoints
C(e) coord list layout spline
Ĉ(e) coord list client request spline
!(e) float weight� 0

Æ(e) float minimum length� 0

strong(e) boolean strong level constraint

Table 1.shared graph objects and their attributes

and updates the model graph, configuration, or objects in the shared graph accordingly.
Each phase must perform these computations in a way that is stable with respect to
the previous layout, while preserving the layout invariants (e.g.hierarchical edges point
downward). The objectives and constraints for each phase are shown in table 2.

The main steps ofProcess (algorithm 5) act on the request subgraphs. We will
describe each in detail.Preprocessconditions the input subgraphs. Some requests triv-
ially fold or cancel, such as an inserting an object and then modifying or deleting it, or
modifying the same object multiple times. Likewise, deleting a node implies deleting
its incident edges.

Phase Objective Constraints

rerankNodes min
X

e=(u;v)2E

w(e)(�(v)� �(u)) �(v) � �(u) + Æ(u; v)

reduceCrossingscrossings X(v) = X(u) + 1

updateGeometrymin
X

e=(u;v)2E

w(e)jX(v)�X(u)j X(v) � X(u) +�(u; v)

Table 2.objectives and constraints

3.2 Rerank nodes

This phase assigns integer levels to the nodes of the graph to maintain the hierarchy, pre-
serve stability, and minimize total edge length, prioritized in that order. The following
discussion assumes the hierarchy is drawn top-to-bottom; of course it is simple to orient
the hierarchy in other ways by pre- and post-processing. Level assignment employs an
integer network simplex solver previously developed for thedot layout program [12].
In applying this solver, Dynadag maintains an auxiliary graphCG y whose nodes are
interpreted as variables and edges as constraints, as shown in tables 3 and 4.

Variable Explanation

8v 2 V : �(v) level ofv or Y (v)
8v 2 V : �(v) stable level assignment ofv
8e 2 Ej:strong(e) : �(e) lower endpoint of weak edge
�min; �max lowest and highest levels

Table 3.variables inCGy

Constraint edge Weight Explanation

8v 2 V : �(v)� �min � 0 0 maintain min level
8v 2 V : �max � �(v) � 0 0 maintain max level
8e = (u; v) 2 Ej strong(e) : �(v)� �(u) � Æ(e) !(e) strong edge constraint
8e = (u; v) 2 Ej:strong(e) : �(e)� �(u) � 0 !(e) weak edge constraints

�(e)� �(v) � Æ(e) crev!(e)

Table 4.constraints inCGy

Dynadag treats client edges as eitherstrongor weaklevel assignment constraints.
A strong edge is always hierarchical: it points downward so its head is on a higher-
numbered level than its tail. Aweakedge is unconstrained and may point downward,
upward or sideways across the same level. To favor hierarchical drawing, weak edges
usually have a high costcrev associated with a non-downward orientation, although a
client can explicitly set!(e) to be small or zero to defeat this bias. Edges are strong
unless the client marks them as weak or pins an endpoint. If the algorithm encounters a
cycle, it marks the last inserted edge of the cycle as weak; if the cycle is later broken,
this edge will point downward.

The network simplex solver we use does not have any intrinsic stability. To compen-
sate, we add explicit variables and constraints that penalize level assignments by their
variance from some given assignment (usually the previous layout or a client-suggested
coordinate). Adjusting the penalty edge weights changes the tradeoff between minimiz-
ing edge length and maintaining geometric stability.

There are a few additional details to obtaining good level assignments. One is that
stability constraints are removed on un-pinned nodes when the client inserts the first in-
cident edge: the previous location of a disconnected, unpinned node is assumed unim-
portant. Also, Dynadag ensures that nodes with slack in their level assignments are
brought up near their parents, by adding non-zero weight constraints with reference to
a global anchor node.

Fig. 1. multiheight ranking system inCGy

Dynadag supports two ranking systems. The first, familiar from STT, is intended
when nodes all have about the same height. In this case, nodes are aligned on ranks, and
ranks are separated enough to fit the nodes. The second system better accommodates
large differences in node heights by assigning independent levels to the top and bottom
of each node. In this case, ranks simply encodeY coordinates and nodes can potentially
span many ranks. The second system is more general than the first, but results in larger
model graphs, and can allow edges to cross large nodes unless other heuristics are added
to the edge router. When nodes are of the same size, the model graph is approximately
twice the input graph’s size. Both models are of complexityO(N 2) in the size of the
input graph.

At the end of this phase, every node is labeled with its new level assignment,�(v).

3.3 Restore Configuration

This phase updates the configurationLi;j according to the new levels�(v). Long edges
will be converted into chains of model nodes, all one level apart. We will write the
model node chain ofe = (u; v) asu; �0; �1; : : : ; v. (Self-arcs and flat edges within the
same level are ignored in this phase.) When using the multirank node system, nodes
that span ranks are also converted to chains. ThusL i;j gives the orderj of all nodes and
edges appearing in leveli.

Dynadag first moves the pre-existing nodes or node chains to match the new ranks
assigned in the previous phase. Then it moves edges by moving the chains to the new
ranks, lengthening or clipping them as necessary. If the user has specified coordinates
for an edge, Dynadag honors the request by placing the model edge for each rank at
theX position determined by intersecting the user path with the rankY . Otherwise it
simply draws the chain in a straight line.

3.4 Minimize Crossings in Configuration

At this point, the configuration fully depicts the requested layout. However, edges may
be tangled, and in the multirank node system, may even cross nodes.

Dynadag uses a variant of thedotcrossing minimization heuristic to eliminate node
crossings and avoid edge crossings. First it determines which model graph objects are
candidates for adjustment. To the nodes and edges corresponding to objects from the
insertandmodifyshared subgraphs, it adds edges incident on nodes in these subgraphs.
(This neighborhood could be extended to try to improve readability at the expense of
stability.)

The crossing minimization heuristic scans the configuration and applies two differ-
ent sorts:median sortandtransposition sort. As it runs, it records the best configuration
found so far; if after some number of passesk the configuration has not improved, it
restores the best assignment. Its scans alternate between left-to-right and right-to-left,
top-to-bottom and bottom-to-top, to avoid built-in bias.

Median sort rearranges nodes according to the median position of incident nodes
in the adjacent rank last visited. Transposition sort exchanges adjacent nodes if this re-
duces the crossing number. As an optimization, transpose sort employs a sifting matrix
[5] to avoid re-counting crossings each scan.

On every scan, either the median sort or the transposition sort may reorder nodes
even if the crossing number does not decrease. This allows the heuristic to sometimes
escape local minima even when no immediate benefit is evident. We have observed that
the transposition sort tends to propagate these attempts up or down edge chains in the
graph until it eventually eliminates crossings.

It is important to ignore node crossings on the first scan, because nodes must tem-
porarily move across edges to reduce crossings. Weighting node crossings too heavily
prevents the transposition sort from trying these steps. Instead, the heuristic first opti-
mizes the model, ignoring whether model edges belong to real nodes. Then it changes
the scoring system to penalize edge-node crossings and especially node-node crossings,
and scans the graph with the transposition sort to eliminate most node crossings.

It is not always possible to eliminate edge-node crossings in a strictly hierarchi-
cal layout with multirank nodes. If any edge-node crossings are left, Dynadag should
specially route these edges non-hierarchically in the last phase, but we have not yet
implemented this heuristic.

3.5 Update Geometry

This phase computes the coordinatesX(v) for model nodes, re-using the integer net-
work simplex solver from step 2. The linear program’s variables and constraints are
listed in tables 5 and 6 and are represented in an auxiliary graphCG x.

Variable Explanation

�left the left boundary of the layout
8v 2 G : �(v) X coordinate of nodev
8e 2 G : �(e) left point ofe
8v 2 G : � (v) stable anchor ofv
S(Li;j) width ofLi;j

Table 5.CGx variables

Variable Explanation

8i : �(Li;0) � �left maintain left boundary

8i; j : �(Li+1;j) � �(Li;j)) +�x(G) +
S(Li;j)+S(Li+1;j)

2
separate adjacent nodes

8v 2 G : �(v) � �left maintain left boundary
8e 2 G : �(head(e)) � �(e) maintain leftmost node of e
8e 2 G : �(tail(e)) � �(e) maintain leftmost node of e

Table 6.CGx constraints

The objective is:

min
X

e=(u;v)2E

c !(e)(�(v)� �(e) + �(u))� �(e)) +
X

v2V

(1� c)(�(v)� �(v))

which has a term for the total weighted edge length (measured by theL 1 norm),
and a term for the total distance that nodes move from certain given positions (previous
placements or client-requested positions). The constantc trades off stability and edge
length minimization.

After node position assignment, Dynadag recomputes edge routesC(e)where needed.
New edges must always be routed and existing edges are re-routed when an endpoint

has moved or the edge has a model node whose distance is less than�x(G) from a
neighbor in the same level. Edges are drawn one at a time by a 2-D spline fitter [7]
whose input is a simple path and a list of barrier segments. It returns a piecewise cubic
Bezier curve that is close to the path and does not cross any barrier. For Dynadag to
provide these arguments to the spline fitter, it takes the model node path of the edge to
be drawn, and computes a constraint polygon that contains the path nodes extended hor-
izontally to�x(G) from neighboring model nodes on the same ranks, ignoring model
nodes of edges that cross the one being routed. (Thus, crossings do not appear artifi-
cially “forced” to a certain point.) We also compute the shortest path within the con-
straint polygon, and provide that, along with the constraint polygon as a list of barrier
segments, to the spline fitter.

A final detail is the updating ofX coordinates of model nodes� i of an edgee to
reflect the intersections ofC(e) with the centerlines of levels that it crosses. In other
words, model nodes are moved to match the computed spline.

TheUpdateGeometry algorithm follows from these details; its listing is omitted
to save space.

4 Performance

The asymptotic complexity of the proposed heuristic is dominated by the network sim-
plex algorithm invoked in the first and third phases. Its complexity isO(IVE) per re-
fresh; althoughI is not provably polynomial, it is often nearly linear in practice. In the
second phase, the crossing minimization heuristic is alsoO(IVE) whereI is a small
constant that we determine. The edge spline fitter isO(V 3), but often performs quadrat-
ically.

We measured the performance of an implementation of the proposed heuristic run-
ning on an 1 GHz Intel Pentium PC. The rest graphs were Forrester’s World Dynamics
graph and the Unix family tree circa 1988, available asworld.dot andunix.dot
in the graphviz package fromwww.graphviz.org . To interpret these dynamically,
in our experiments we serially inserted nodes (each with its incident edges) until the
whole graph was built. Nodes were ordered by breadth-first and depth-first search. We
also ran a simple random graph generator. Figures 2 and 3 are animation sequences.
Figure 4 shows running time per iteration versus number of graph objects, for each
phase. We made full measurements of running time, static layout quality and stability,
and expect to report these in a full version of this paper. We noticed that layouts remain
readable throughout long editing sequences. This is fortunate, as we had suspected that
they could deteriorate so much as to require frequent instable global reoptimization.

The performance of our implementation depends upon the density and complexity
of the input graph. For sparse graphs with 95% of insertions being leaves,Process

takes less than a second for each of the first 150 insertions. As the graph gets denser,
the greater proportion of long edges increases the cost of crossing optimization andX

coordinate assignment. With 90% leaves, Dynadag updates graphs of up to 120 nodes
in a second. At 80%, graphs inserted incrementally have many crossings, and Dynadag
only runs adequately on graphs with no more than 90 nodes.

Since each stage of the algorithm takes time proportional to the model graph size,
the batch performance of Dynadag is only slightly worse than the incremental case. This
means that when the graph gets too unreadable, re-layout of the graph or part of it is
always an option. Although more tuning is needed for interactive use, the prototype
is suitable to incremental display of reasonable sized graphs, and to the generation
of off-line animations. Improving the asymptotic behavior of our heuristic remains a
fascinating goal.

5 Related Work

Newbery-Paulisch and Bolinger proposed augmenting the batch STT algorithm with
constraints that preserve the order of nodes staying within the same hierarchical level
between successive layouts [3]. This is a good idea, but doesn’t preserve placement
when nodes change levels. Eades and Sugiyama identified the general problem of sta-
ble incremental graph layout and proposed using the global left-to-right scan order of
vertices as the stability criterion [9].

In the other main layout families, Tamassia et al and Biedl and Kauffman propose
sophisticated incremental algorithms for orthogonal layout [2, 4, 15]. In contrast, force-
directed layout algorithms often rely on incremental local search algorithms that can
easily drive animated displays [1, 6, 10]. There is a straightforward way of defining
additional forces to anchor nodes near intended stable positions, as reported in experi-
ments by Eades and Huang [13].

6 Conclusions

The heuristic has been implemented in an experimental testbed [11, 17] that produced
the sequences shown in the figures. Short videos can be seen atwww.research.
att.com/˜north/videos/gd2001 .

There are several ways the heuristic and its implementation might be improved:

– implement edge labels as model nodes
– consider flat edges in counting crossings
– improve theReduceCrossings heuristic
– improve sensitivity to the ordering ofmoveOldNodes
– support nested diagrams
– exploit look-ahead in off-line layout
– invent an output-sensitive heuristic

A final remark is that the STT heuristic has proven surprisingly flexible, having
accommodated many variants of both static and dynamic layout.

7 Acknowledgments

John Ellson, Emden Gansner, and John Mocenigo shared many ideas with us and made
key contributions to our implementations and user interfaces. We also thank the referees
of Graph Drawing 2001 for their suggestions.

References

1. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.Graph Drawing:
algorithms for the visualization of graphs. Prentice-Hall, 1999.

2. Therese Bield and Michael Kaufmann. Area-efficient static and incremental graph drawings.
In Proc. 5th European Symposium on Algorithms (ESA’97), volume 1284 ofLecture Notes
in Computer Science, pages 37–52. Springer-Verlag, 1997.

3. K. Bohringer and F. Newbery Paulisch. Using constraints to acheive stability in automatic
graph layout algorithms. InProceedings of ACM CHI’90, pages 43–51, 1990.

4. S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive Giotto: An
algorithm for interactive orthogonal graph drawing. In G. Di Battista, editor,Graph Draw-
ing ’97, volume 1353 ofLecture Notes in Computer Science, pages 303–308, Rome, Italy,
1998. Springer-Verlag.

5. R. Schonfeld C. Matuszewski and P. Molitor. Using sifting fork-layer crossing minimiza-
tion. In Jan Kratochv´ıl, editor,Graph Drawing ’99, volume 1731 ofLecture Notes in Com-
puter Science, pages 217–224. Springer-Verlag, 2000.

6. J. Cohen. Drawing graphs to convey proximity: an incremental arrangement method.ACM
Trans. on Computer-Human Interfaces, 4(11):197–229, 1997.

7. D. Dobkin, E. Gansner, E. Koutsofios, and S. North. Implementing a general-purpose edge
router. In G. Di Battista, editor,Graph Drawing ’97, volume 1353 ofLecture Notes in
Computer Science, Rome, Italy, 1998. Springer-Verlag.

8. P. Eades and C. Friedrich. The Marey graph animation tool demo. In Joe Marks, editor,
Graph Drawing ’00, volume 1984 ofLecture Notes in Computer Science, pages 396–406.
Springer-Verlag, 2001.

9. P. Eades, W. Lai, K. Misue, and K. Sugiyama. Layout adjustment and the mental map.
Journal of Visual Languages and Computing, 6:183–210, 1995.

10. Peter Eades, Robert F. Cohen, and Mao Lin Huang. Online animated graph drawing for web
navigation. In G. Di Battista, editor,Graph Drawing ’97, volume 1353 ofLecture Notes in
Computer Science, Rome, Italy, 1998. Springer-Verlag.

11. J. Ellson and S. North. TclDG - a Tcl extension for dynamic graphs. InProc. 4th USENIX
Tcl/Tk Workshop, pages 37–48, 1996.

12. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing directed
graphs.IEEE Trans. Software Engineering, 19(3):214–230, 1993.

13. M. Huang and P. Eades. A fully animated interactive system for clustering and navigating
huge graphs. In Sue H. Whitesides, editor,Graph Drawing ’98, volume 1547 ofLecture
Notes in Computer Science, pages 374–383, Montreal, Canada, 1999. Springer-Verlag.

14. Tamara Munzner.Interactive visualization of large graphs and networks. PhD thesis, Stan-
ford University, 2000.

15. A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interac-
tive orthogonal graph drawing. In S.C. North, editor,Graph Drawing ’96, volume 1190 of
Lecture Notes in Computer Science, pages 101–112, 1997.

16. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
systems.IEEE Trans. on Systems, Man and Cybernetics, SMC-11(2):109–125, 1981.

17. G. Woodhull and S. North. Montage - an ActiveX container for dynamic interfaces. InProc.
2nd USENIX Windows NT Symposium, 1998.

Algorithm Process(inG)
Input: inG: client requests
Output: outG: layout server’s updates
(� main procedure to process layout requests�)
1. outG Preprocess(inG)
2. outG RerankNodes(outG)
3. outG ReduceCrossings(outG)
4. outG UpdateGeometry(outG)
5. return outG

Algorithm RerankNodes(inG)
(� top level of phase 1- compute new levels�(v). See table 1�).
1. for e 2 edgeDeletions(G)
2. if e is a strong constraintthen
3. remove constraint arc representinge in CGy

4. else remove�(e) and incident arcs fromCGy for
5. for v 2 nodeDeletions(G)
6. remove�(v); �(v) and incident arcs inCGy

7. for v 2 nodeMoveUpdates(G)
8. �(v) mapToRank(RequestCoord(v))
9. if isAStrongMove(v) then
10. for e incident onv
11. remove constraint arc representinge in CGy

12. create edgeaux0 = �(v); tail(e) with !(aux0) = crev!(e)
13. create edgeaux1 = �(v); head(e) with !(aux1) = !(e)
14. stabilize�(v)

Algorithm ReduceCrossings(M;S)
(� reduce crossings on edges incident to nodes in S�)
1. pass 0
2. best crossings(M)
3. while pass< NPASSES and best> 0
4. ntrials 0
5. while pass< NPASSES and ntrials< PATIENCE
6. leftward pass mod 2 == 0
7. downward pass mod 4< 2
8. equalPass pass mod 8< 4
9. BubbleSortPass(S,leftward,HasMedian(downward),MedianCompare(downward))
10. while crossings(M) decreases
11. BubbleSortPass(S,leftward,downward,true,CrossingsCompare)
12. current crossings(M)
13. if current < best then
14. save configuration
15. best current
16. ntrials 0
17. else
18. ntrials ntrials+1
19. if current > best then
20. restore configuration

Algorithm BubbleSortPass(S; leftward; downward; comparable; compare)
1. for r in S
2. for u in r according to leftward
3. if not comparable(u) then continue
4. for v after u in r
5. if not (u 2 S or v 2 S) then break
6. if not comparable(v) then continue
7. if compare(u; v) then
8. put u after v according to leftward

5th Edition

5th Edition

6th Edition

5th Edition

6th EditionPWB 1.0

5th Edition

6th EditionPWB 1.0

LSX

5th Edition

6th EditionPWB 1.0

LSX1 BSD

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini Unix

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdata

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0PWB 2.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0PWB 2.07th Edition

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2 USG 1.0

2 BSD Unix/TS 3.0PWB 2.0 7th Edition

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0PWB 2.0 7th EditionCB Unix 1

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0PWB 2.0 7th EditionCB Unix 1USG 2.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongongInterdataPWB 1.2USG 1.0

2 BSD Unix/TS 3.0PWB 2.0 7th Edition

2.8 BSD

CB Unix 1USG 2.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

2.8 BSD

CB Unix 1USG 2.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

2.8 BSD

CB Unix 1USG 2.0 USG 3.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-112.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-11 Xenix2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-11 XenixUniPlus+2.8 BSD

CB Unix 1USG 2.0 USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-11 XenixUniPlus+2.8 BSD

CB Unix 1USG 2.0

CB Unix 2

USG 3.0 Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-11 XenixUniPlus+2.8 BSD

CB Unix 1USG 2.0

CB Unix 2USG 3.0

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7MUltrix-11 XenixUniPlus+2.8 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32V V7M

Ultrix-11

XenixUniPlus+2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32V V7M

Ultrix-11

XenixUniPlus+

9th Edition

2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32V V7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32VV7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32VV7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3 Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32VV7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4 BSD

4.1 BSDCB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3 Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32VV7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4 BSD

4.1 BSD

4.2 BSD

CB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3 Unix/TS++

Unix/TS 1.0

System V.0

5th Edition

6th EditionPWB 1.0

LSX1 BSD Mini UnixWollongong InterdataPWB 1.2USG 1.0

2 BSD

Unix/TS 3.0

PWB 2.0 7th Edition

TS 4.0

8th Edition 32VV7M

Ultrix-11

XenixUniPlus+

9th Edition 3 BSD

2.8 BSD

2.9 BSD

4 BSD

4.1 BSD

4.2 BSD

CB Unix 1USG 2.0

CB Unix 2USG 3.0

CB Unix 3

Unix/TS++

Unix/TS 1.0

System V.0

Fig. 2. Unix history graph. The first 48 frames drawn by serially inserting nodes with their inci-
dent arcs in breadth-first search order. Each frame is a readable diagram and the sequence appears
somewhat stable.

n1

n2

n1

n2

n3n5

n4

n6n7

n1

n2

n3n5 n11

n4

n6n7n8

n9

n10n12

n1

n2

n3

n5

n11

n4

n6n7 n8

n9

n10n12n15 n14

n16

n13

n1

n2

n3

n5

n11

n4n17

n6n7 n8

n9

n10n20n12n15 n14

n16n21

n13

n18

n19

n1

n2

n3

n5

n11

n4n17 n26

n6n7 n8

n9

n10n20n12n15 n14

n16n21

n13 n22

n18

n23

n19n24

n25

n1

n29

n2

n3

n5

n11

n4n17 n26

n6n7 n8

n9

n10n20n12n15 n27 n14

n16n21

n13 n22

n18n30

n28

n23

n19n24

n25

n31

n1

n29

n2

n3

n5

n11

n4n17 n26

n6n7 n8

n9

n10n20n12n15 n27 n14

n16n21

n13 n22

n18n30

n34

n28

n23n33

n19n24n35

n25

n36

n32

n31

n1

n29

n2

n3

n5

n11

n4n17 n26

n6n7 n8

n9n40

n10n20n12n15 n27 n14

n16n21

n37n13 n22

n18n30

n34

n28n38

n23n33

n19n24n35

n25

n36

n32

n31

n39

n1

n29

n2

n3

n5

n11

n4n17 n26

n6n7 n8

n9n40

n10n20n12n15 n27 n14n41n45

n16n21

n37n13 n22

n18n30

n34

n28n38n42

n23n33

n19n24n35

n25

n36

n32

n31

n39

n44

n43

n1

n29

n2

n3

n5

n11

n4n17 n26

n6n7 n8n48

n9n40

n10n20n12n15 n27 n14n41n45

n16n21

n37n49n13 n22

n18n30

n34

n28n38n42

n23n33

n19n24n35

n25

n36n50

n32

n31

n47

n39

n44

n43n46

n1

n29n51

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9n40

n10n20n12n15 n27 n14n41n45

n16n21

n37n49n13 n22n54

n18n30

n34

n28n38n42

n23

n33

n19n24n35

n25

n36n50

n32

n31

n47

n39

n44

n43n46

n53

n1

n29n51

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56n13 n22n54

n18n30

n34

n28n38n42

n23

n33

n19n24n35 n57

n25

n36n50

n32

n31

n47

n39

n44

n59

n43n46

n53

n55 n58

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56

n61

n13 n22n54

n18n30

n34

n28n38n42

n23

n33

n19n24n35 n57

n25

n64

n36n50

n32

n31

n47

n39

n44

n59

n43n46

n53

n55

n63

n58

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56

n61

n13 n22n54

n18n30

n34 n69

n28n38n42

n23

n33

n19n24n35 n57

n25

n64n66

n36n50

n32

n31

n65

n47

n39n67

n44

n59

n43n46

n53

n55

n63

n58

n68

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56

n61

n13 n22n54

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n24n35 n57

n25

n64n66

n36 n50

n32

n31

n65

n47

n39n67

n44

n59n70

n43n46 n73

n53

n55

n71

n63

n58

n68

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56

n61

n13 n22n54n75

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n24n35 n57

n25

n64n66

n36 n50

n32n74

n31

n65

n47

n39n67

n44

n59n70

n43n46 n73

n53

n77

n55

n71

n63

n58

n68

n76

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61

n13 n22n54n75

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n24n35 n57

n25

n64n66

n36 n50

n32 n74

n31

n65

n47

n39n67

n44n78

n59n70

n43

n46

n73

n53

n77

n55

n80

n71

n79

n63

n58

n68

n76

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61

n13 n22n54n75

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n24n35 n57

n25

n64n66

n36 n50

n32 n74

n31

n65

n47

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55

n80

n71

n79

n63

n58

n68n85 n86

n83

n76

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61

n13 n22n54n75

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n87n24n35 n57

n25

n64n66

n36 n50

n32 n74

n31

n65

n47

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55

n80

n71

n79

n63

n58

n68n85 n86 n89

n83

n76

n90 n88

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61

n13 n22n54n75

n18 n30

n34 n69

n28n38n42

n23

n33

n19 n72n87n24n35 n57

n25

n64n66

n36 n50

n32 n74

n31

n65

n47

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55

n80

n71

n79

n63

n58n96

n94

n68n85 n86 n89

n83n95

n76n93

n90 n88

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61

n13 n22n54n75

n18 n30

n34 n69n101

n28n38n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66

n36 n50n97

n98

n32 n74

n31

n65

n47

n100

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55

n80

n71

n79

n63

n58n96

n94

n68n85 n86 n89

n83n95

n76n93

n90 n88

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61n104

n13 n22n54n75

n18 n30

n34 n69n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66

n105

n36 n50n97

n98

n32 n74

n31

n65

n47

n100

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55n102

n80

n71

n79

n63

n58n96

n94

n68n85 n86 n89

n83n95

n76n93

n90 n88

n103

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61n104

n13 n22n54n75

n18 n30n108

n34 n69

n101

n28n38

n42

n23

n33

n19 n72 n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98

n32 n74

n31n107

n65

n47

n100

n39 n67

n44n78n82

n59n70

n43

n46

n73

n53

n77 n84

n55n102

n80

n71

n79

n63n109

n58n96

n94

n68n85 n86 n89

n83n95

n76n93

n90 n88

n103

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61n104

n13 n22n54n75

n18 n30n108

n34 n69

n101

n28n38

n42

n23

n33

n19 n72 n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n63n109

n58n96

n94

n68n85 n86 n89

n83n95n111

n76n93

n90 n88

n103

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72 n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n63n109

n58n96

n94n114

n68n85 n86 n89

n83n95n111

n76n93

n90 n88

n103

n116

n115

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72 n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n63n109

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n120 n90 n88

n103

n116

n115

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72 n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n63n109

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n120 n90

n126

n88

n103

n116

n124

n127

n115

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n63n109

n129

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n120 n90

n131

n126

n88

n103

n116

n128

n124

n127

n115 n130

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80

n71

n79

n135

n63n109

n129

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n120n137 n90

n131

n126

n88

n103

n116

n128

n124n136 n134

n127

n115

n133

n130

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73

n53n113

n77 n84

n55n102

n80n138n139

n71

n79

n135

n63n109

n129

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n120n137 n90

n131

n126

n88

n103

n116

n128

n124n136 n134

n127

n115

n133

n130

n141

n140

n1

n29n51 n60

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73

n53

n113

n77 n84

n55n102

n80n138n139

n71

n79

n135

n63 n109

n129

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n143

n120n137 n90

n131

n126

n88

n103

n116

n128

n124n136 n134

n127

n115

n144

n133

n130

n141

n140

n1

n29n51 n60n148

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147

n53

n113

n77 n84

n55n102

n80n138n139

n71

n79

n135

n63 n109

n129

n58n96n119

n94n114

n123

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n143

n120n137 n90

n131

n126

n88

n103

n149

n116

n128

n124n136 n134

n127

n115

n144

n133

n130

n141

n140

n146

n1

n29n51 n60n148

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48

n9 n40n62 n92

n10 n20n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87n99n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147

n53

n113

n77

n84

n55n102

n80n138n139

n71

n79

n135

n63 n109

n129

n58n96n119

n94n114

n152 n123n153

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132

n143

n120n137 n90

n131

n126

n88

n103

n149

n116

n128

n124n136

n151

n134

n127

n115

n144

n133

n130

n141

n140

n146

n150

n1

n29n51 n60n148n156

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48n158

n9 n40n62 n92

n10 n20n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18 n30n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87 n99n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147n154

n53

n113

n77

n84

n55n102

n80n138n139

n71

n79

n135

n63 n109

n129

n58n96n119

n94n114

n152 n123n153

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132n157

n143

n120n137 n90

n131

n126

n88

n103

n149

n155

n116

n128

n124n136

n151

n134

n127

n115

n144

n133

n130

n141

n140

n146

n150

n1

n29n51

n60

n148n156

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48n158

n9 n40n62 n92

n10 n20n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18n30 n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87 n99n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147n154

n53

n113

n77

n84

n55n102

n80n138 n159n139

n71

n79

n135

n63 n109

n161

n129

n58n96n119

n94n114 n160

n152

n123n153

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132n157

n143

n120n137 n90

n131

n126

n88

n103

n149

n155

n116

n128

n124n136

n151

n134

n127

n115

n144

n133

n130

n141

n140

n162

n146

n150

n1

n29n51

n60

n148n156

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48n158

n9 n40n62 n92

n10n20 n91n142n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18n30 n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87 n99

n167

n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147n154

n53

n113 n166

n77

n84

n55n102

n80n138 n159n139

n71

n79

n135

n63 n109

n161

n129

n58n96n119

n94n114 n160

n152

n123n153

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132n157

n143

n120n137 n90

n131

n126

n88

n103

n149

n155

n116

n128

n124n136

n151

n134

n127

n164n115

n144

n133

n130

n141

n140

n162n165

n146

n150

n163

n1

n29n51

n60

n148n156

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48n158

n9 n40n62 n92

n10n20 n91n142 n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18n30 n108n118

n34 n69

n101

n28n38

n42

n23

n33

n19 n72n87 n99

n167

n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147n154

n53

n113 n166

n77

n84

n55n102

n171

n80n138 n159n139

n71

n79

n135

n63 n109

n161n168

n129

n58n96n119

n94n114 n160

n152

n123n153

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132n157

n143

n120n137 n90

n131n169

n126

n88

n103

n149

n155

n116

n128

n124n136

n151

n134

n127

n164n115

n144

n133

n130

n141

n140

n162n165

n146

n150

n163

n170

n1

n29n51

n60

n148n156

n2

n3

n5

n11

n4

n17

n26

n52

n6n7 n8n48n158

n9 n40n62 n92

n10n20 n91n142 n12n15 n27n125 n14n41n45

n16n21

n37n49 n56n81

n61 n104

n13 n22n54n75

n18n30 n108n118

n34 n69

n101

n176

n28n38

n42

n23

n33

n19 n72n87 n99

n167

n24n35 n57n145

n25

n64n66n106

n105

n36 n50n97

n98n117

n32 n74n110

n31n107

n65

n47

n100

n39 n67

n44 n78n82 n112

n59n70

n43

n46

n73 n147n154

n53

n113 n166

n77

n84

n55n102

n171

n80n138 n159n139

n71

n79

n135

n63 n109

n161n168

n129

n58n96n119

n94n114 n160

n152

n123n153

n173

n68n85 n86 n89

n83n95n111

n121

n122 n76n93

n132n157

n143

n120n137 n90

n131n169

n126

n88

n103

n149

n155

n116

n128

n124n136

n151

n134

n127

n164n172 n115

n144

n133

n130

n141

n140

n162n165

n175

n146

n150

n163

n170

n174

Fig. 3.Sparse random graph,p(leaf) = 0:90. Every 5th frame from a sequence of 200 is shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

Sparse random graph,p(leaf) = :9

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25 29 33 37 41 45 49

World Dynamics, breadth-first order

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 5 9 13 17 21 25 29 33 37 41 45 49

World Dynamics, depth-first order

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 5 9 13 17 21 25 29 33 37 41 45 49

Unix history, depth-first order

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49

Unix history, full batch layout

draw splines

optimize x coordinates

crossing optimization

update model graph

re-rank nodes

preliminary

Fig. 4.Time per update in seconds vs. number of nodes for random graphs and two other example
graphs. Most updates were less than 0.1 sec. The heuristic was tuned to balance the cost of the
different phases.

