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Abstract. One of the most popular graph drawing methods is based on achiev-
ing graph-theoretic target distances. This method was used by Kamada and Kawai
[15], who formulated it as an energy optimization problem. Their energy is known
in the multidimensional scaling (MDS) community as the stress function. In this
work, we show how to draw graphs by stress majorization, adapting a technique
known in the MDS community for more than two decades. It appears that ma-
jorization has advantages over the technique of Kamada and Kawai in running
time and stability. We also found the majorization-based optimization being es-
sential to a few extensions to the basic energy model. These extensions can im-
prove layout quality and computation speed in practice.

1 Introduction
A graph is a structure G(V ={1, . . . , n}, E) representing a binary relation E over a
set of nodes V . Visualizing graphs is a challenging problem, requiring algorithms that
faithfully represent the graph’s structure and the relative similarities of the nodes [4,
16]. Here we will focus on drawing undirected graphs with straight-line edges.

The most popular approach defines, sometimes implicitly, an energy, or cost func-
tion, based on some virtual physical model of the graph. Minimizing this function de-
termines an optimal drawing. In the approach considered here, originally proposed by
Kamada and Kawai[15], a nice drawing relates to good isometry. We have an ideal dis-
tance dij given for every pair of nodes i and j, modeled as a spring. Given a 2-D layout,
where node i is placed at point Xi, the energy of the system is

∑

i<j

wij (‖Xi − Xj‖ − dij)
2 . (1)

We desire a layout that will minimize this function, thereby best approximating the tar-
get distances. Here, the distance dij is typically the graph-theoretical distance between
nodes i and j. The normalization constant wij equals d−α

ij . Kamada and Kawai [15]
chose α = 2, whereas Cohen [6] also considered α = 0 and α = 1. Moreover, Cohen
suggested setting dij to the linear-network distance to convey the clustering structure
of the graph.

The function (1), with α = 0, appeared earlier as the stress function in multidimen-
sional scaling (MDS) [5, 6, 18], where it was applied to graph drawing [17]. Whereas
Kamada and Kawai proposed a localized 2-D Newton-Raphson process for minimiz-
ing the stress function, researchers in the MDS field have proposed a different, more
global approach called majorization. Majorization seems to offer some distinct advan-
tages over localized processes like Newton-Raphson or gradient descent. These include



guaranteed monotonic decrease of the energy value, improved robustness against local
minima and shorter running times. The main contribution of this work is the introduc-
tion of this technique in the framework of graph layout.

Three useful extensions to stress optimization require the power and flexibility
of majorization optimization. The first extension, described in Section 3, deals with
weighting edge lengths in a way that better utilizes the drawing area, and is espe-
cially useful for drawing real-life graphs whose degree distribution follows a power
law. We have found empirically that traditional stress optimization is unstable under
such a weighting, while majorization works very well. The second extension deals with
sparse stress functions, where only a small fraction of all pairwise distances are consid-
ered. This is essential for reducing the time and space complexity of stress optimization,
and allows in-core layout of much larger graphs. We have found that sparse stress op-
timization is practically impossible when using the Kamada-Kawai technique (unless
one has a very good initialization). Again, with majorization, it is easy to work with
sparse models.

The last extension deals with obtaining an approximate drawing of the graph by
constraining the layout axes to lie within a carefully selected small vector space. Such
a technique was recently introduced by Koren [14] and can be integrated into layout al-
gorithms based on matrix algebra. Fortunately, the algebraic nature of the majorization
process allows us to perform rapid subspace-restricted stress minimization. The two
latter extensions are described in the full version of this work.

2 Stress Majorization
In this section, we review stress majorization as described in the MDS literature [3, 5].
We denote a d-dimensional layout by an n × d matrix X . Thus, node i is located at
Xi ∈ Rd and the axes of the layout are X(1), . . . ,X(d) ∈ Rn. The associated stress
function is

stress(X) =
∑

i<j

wij (‖Xi − Xj‖ − dij)
2 . (2)

We always take wij = d−2
ij , which seems to produce the best drawings in most cases.

Decompose (2) to obtain

stress(X) =
∑

i<j

wijd
2
ij +

∑

i<j

wij‖Xi − Xj‖
2 − 2

∑

i<j

δij‖Xi − Xj‖ , (3)

where δij
def
= wijdij for i, j = 1, . . . , n.

The first term of (3),
∑

i<j wijd2
ij , is a constant independent of the current layout.

The second term,
∑

i<j wij‖Xi − Xj‖2, is a quadratic sum, and can be written using
the quadratic form of the weighted Laplacian Lw

∑

i<j

wij‖Xi − Xj‖
2 = Tr(XT LwX) , (4)

where the n × n weighted Laplacian has its ij entry, for i, j = 1, . . . , n, defined as

Lw
i,j =

{

−wij i %= j
∑

k "=i wik i = j
.



The third term,
∑

i<j δij‖Xi − Xj‖, is more involved and we will bound it from
below. We will make use of the Cauchy-Schwartz inequality

‖x‖‖y‖ ! xT y

with equality when x = y. Consequently, given any n × d matrix Z,

‖Xi − Xj‖‖Zi − Zj‖ ! (Xi − Xj)
T (Xi − Zj)

with equality when X = Z. We can now bound the third term as follows
∑

i<j

δij‖Xi − Xj‖ !
∑

i<j

δij inv(‖Zi − Zj‖)(Xi − Xj)
T (Zi − Zj) (5)

where inv(x) = 1/x when x %= 0 and 0 otherwise.
Inequality (5) can be written in a more convenient matrix form

∑

i<j

δij‖Xi − Xj‖ ! Tr(XT LZZ) ,

where the n × n matrix LZ has its ij entry, for i, j = 1, . . . , n, defined as

LZ
i,j =

{

−δij inv(‖Zi − Zj‖) i %= j
−

∑

j "=i LZ
i,j i = j

.

Combining all the above, we can bound the stress function using F Z(X) defined as

FZ(X) =
∑

i<j

wijd
2
ij + Tr(XT LwX) − 2Tr(XT LZZ). (6)

Thus, we have
stress(X) " F Z(X) (7)

with equality when Z = X .
Note that Z is a constant n× d matrix. This way we have bounded the stress with a

quadratic form F Z(X). We differentiate by X and find that the minima of F Z(X) are
given by solving

LwX = LZZ .

Or, equivalently, for each axis we have to solve

LwX(a) = LZZ(a), a = 1, . . . , d . (8)

The characteristic of the minima is determined by the nature of the weighted Lapla-
cian Lw, which is known to be positive semi-definite with a one-dimensional null space
spanned by 1n = (1, . . . , 1) ∈ Rn. Hence, F Z(X) has only global minima, which are
invariant under translation (addition of α · 1n is equivalent to translation). This makes
sense, since the stress function is also invariant under translation.

Numerically, it is better to make the minimizer unique. Hence we recommend re-
moving the translation degree-of-freedom by taking X1 = 0. Therefore, we can re-
move the first row and column of Lw, as well as the first row of LZZ. The resulting
(n− 1)× (n− 1) matrix is strictly diagonal dominant and hence positive definite. This
is very convenient, since methods like conjugate gradient, Gauss-Seidel, and Cholesky
factorization are guaranteed to work [9].



The optimization process
The above formulation leads to the following iterative optimization process. Given
some layout X(t), we want to compute a layout X(t + 1) so that stress(X(t + 1)) <
stress(X(t)). We use the function F X(t)(X) which satisfies F X(t)(X(t)) = stress(X(t)).

We take X(t + 1) as the minimizer of F X(t)(X) by solving

LwX(t + 1)(a) = LX(t)X(t)(a), a = 1, . . . , d . (9)

At this point, if X(t + 1) = X(t), we terminate the process. Otherwise, we get

stress(X(t + 1)) " F X(t)(X(t + 1)) < F X(t)(X(t)) = stress(X(t)) .

The first inequality is by (7) and the second inequality is by the uniqueness of the
minimum.

In practice we terminate the process when

stress(X(t)) − stress(X(t + 1))

stress(X(t))
< ε , (10)

where ε is the tolerance of the process. Typically, ε ∼ 10−4.
To summarize, the majorization process involves iteratively solving (9). The matrix

Lw is constant throughout the entire process, whereas the matrix LX(t) would be re-
computed at each iteration.

2.1 Equation solvers

In practice we recommend using either Cholesky factorization or conjugate gradient
(CG) [9] to solve (9) (by first fixing X1 = 0 as discussed above). Using Cholesky
factorization implies that at a preprocessing stage we find the LLT factorization of Lw

using n3/3 flops (floating point operations). Then in each iteration we solve the linear
system using back substitution in time O(n2). Hence, the significant cost in Cholesky
factorization is independent of the number of iterations, making it is suitable for graphs
requiring many iterations of process (9).

On the other hand, CG optimization involves no preprocessing and its running time
is evenly distributed among the iterations. Almost the entire solving time is devoted to
performing matrix-vector multiplication. Each such multiplication takes n2 flops. Thus,
if the total number of matrix multiplications is less than about n/3, the CG process is
expected to be faster than Cholesky factorization. Otherwise, Cholesky factorization
is recommended. In practice, for most graphs we have experimented with, CG outper-
formed Cholesky since the total number of matrix-vector multiplications is typically
less than n/3. Note that CG benefits by the fact that we have an initial approximate
solution from the previous iteration. We observed that the overall number of iterations
increases very moderately with the size of the graph. Therefore, for large graphs (over
10,000 nodes), we encountered cases where the total number of matrix-vector multipli-
cations exceeded even n, so Cholesky factorization should do much better. In any case,
all the results reported here employ CG.



2.2 Intuitive interpretation
Let us concentrate on axis a, and denote the current coordinates by x̂ = X(t)(a). The
majorization process determines the new coordinates x = X(t + 1)(a) by solving the
system of equations (9). Eliminating xi in equation i, we rewrite the system in an equiv-
alent form

xi =

∑

j "=i wij (xj + dij(x̂i − x̂j)inv(‖X(t)i − X(t)j‖))
∑

j "=i wij
. (11)

The intuitive interpretation of this process is simple. A node j located at xj strives
to place node i (on current axis a) at xj + dij

x̂i−x̂j

‖X(t)i−X(t)j‖
.

Based on the current placement, this is node j’s best strategy to assure that node
i will be at distance dij from j in the full multidimensional layout. To see this, no-
tice that the distance between the nodes depends on all the axes. Therefore, node j’s
estimate of the contribution of axis a for the distance between i and j is the fraction
α = | x̂i−x̂j

‖X(t)i−X(t)j‖
|. So the magnitude of displacement should be dij scaled down by

α. Now, after deciding the magnitude of the 1-D displacement, the direction must be
decided: should we place xi at xj + αdij or at xj − αdij? Again, the decision is based
on the current placement, whether currently x̂i < x̂j or vice versa.

This way, each node j votes for its desired placement of xi. The final position is
determined by taking the weighted average of the suggested positions. This intuition
also suggests a localized optimization process, which we next describe.

2.3 Localized optimization
Following the idea of Kamada and Kawai [15], we can fix the positions of all nodes,
except some node i. Then, by the same argument given above for the full majorization
process, it can be shown that the stress function is decreased by setting the position of i
as follows

X(a)
i ←

∑

j "=i wij

(

X(a)
j + dij(X

(a)
i − X(a)

j )inv(‖Xi − Xj‖)
)

∑

j "=i wij
, a = 1, . . . , d .

(12)
This way we can iterate through all nodes, and in each iteration relocate all the d coor-
dinates of node i according to (12). Each iteration is guaranteed to strictly decrease the
stress until convergence. Hence, oscillations and non-convergence are impossible.

In practice, we have only used the more involved global process (9) and have no
experience yet with the local version. We provide this local version here mainly because
it is simple and easy to implement, requiring no equation solver.1

2.4 Comparisons
A natural question is whether we should replace the traditional Kamada-Kawai based
optimization with majorization. Based on several months of experimenting with both
approaches, our definite answer is yes. We base this recommendation on several con-
siderations.

1 Process (12) should not be confused with the similar Gauss-Seidel process that can be used to
solve (9).



We experimented with various example graphs. On each graph, we ran each of the
two algorithms 25 times with different random initializations. At certain times during
each execution, we measured the elapsed running time and the current value of the stress
function, and averaged over all 25 executions. From this we obtained stress-vs.-time
charts for the graphs. While it is impossible to present here all of the charts, we show a
few representative ones in Figures 1-3. We can make some important observations.

Layout quality We observed that most of the time, the two methods eventually
achieved about the same stress level. In certain cases, the Kamada-Kawai approach
would yield a slightly better layout in terms of the stress value, but the difference was
always small; see Figure 2. In other cases, however, the majorization approach yielded
significantly better layouts as can be seen in Figure 3. Hence, probably due to its more
global nature, majorization can be considered better in terms of layout quality.

Monotonicity of convergence A significant advantage of majorization is that itera-
tions monotonically decrease the stress until convergence. This way, termination of the
process is determined naturally by a condition like (10). However, our experience with
the Kamada-Kawai approach, as implemented in Neato [7], shows that in some cases
the latter process may cycle without converging, while the energy is oscillating. This
requires an artificial or more convoluted termination condition.

Our experiments show that, as expected, the majorization approach was always
monotonic in decreasing the stress value. The non-monotonicity problem of the Kamada-
Kawai method was extremely rare (remember that we averaged over 25 executions,
lessening the impact of a single bad non-monotonic execution). We did observe this
non-monotonic behavior when experimenting with the Qh882 graph [1]. The result is
provided in Fig. 1, which compares the average behavior of both approaches on this
graph. We should note that here we weighted edges as explained in Section 3. The
reader can see that after 2 seconds of running, the stress value in the Kamada-Kawai
approach increases for some period. Here, this did not prevent it from converging at
about the same stress level as the majorization process.

Running time The running time of the majorization process is consistently less
than that of the Kamada-Kawai process. In all runs, it can be observed that majorization
reaches the low stress level much before Kamada-Kawai.

A partial explanation is that majorization’s running time is dominated by matrix
operations (matrix-vector multiplication or Cholesky factorization). These operations
are implemented in libraries like BLAS and LAPACK which are highly optimized on
the machine instruction level for common platforms. We are using the Intel Math Kernel
Library [22]; another well-known implementation is Atlas [23].

For implementations not relying on special matrix software, we found the situation
to be similar to that of the stress function. Sometimes the Kamada-Kawai approach
would be marginally faster; on the other hand, when the majorization process was faster,
it was significantly faster. And as the size of the graphs increased, the advantage swung
completely to majorization.

Before leaving this topic, we must point out that our implementation of the Kamada
and Kawai process on which we based our comparisons differs slightly from the imple-
mentation originally suggested [15]. We are using the more common implementation
which replaces the two nested loops with a single loop; see [2, 11]. As noted in Bran-
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Fig. 1. Stress function vs. running time for the graph Qh882 [1] (|V|=882, |E|=1533). Here both
methods reached about the same stress. Interestingly, Kamada-Kawai is not monotonic.
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Fig. 2. Stress function vs. running time for the graphs Bcspwr07 [1] (|V|=882, |E|=1533) and 516
[19] (|V|=516, |E|=729).

denburg, Himsolt, and Rohrer [2], this leads to a significant speed-up over the original
implementation. This more efficient implementation is also the one used in Neato [7]
and GraphLet [21].

3 Weighting Edge Lengths

In many real life graphs, the degree distribution decays at a much lower rate than in
random graphs. Usually this distribution follows a power law and is proportional to
d−λ. Setting desired edge lengths to a uniform length (typically 1) inevitably makes the
neighborhood of high degree nodes too dense in the layout. Consequently, we suggest
weighting edges by their neighborhood size.
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Fig. 3. Stress function vs. running time for the graphs Qh1484 [1] (|V|=1470, |E|=6420) and
Plsk1919 [1] (|V|=1919, |E|=4831).

Specifically, we set the length of each edge 〈i, j〉 ∈ E as

lij = |Ni ∪ Nj | − |Ni ∩ Nj | , (13)

where Ni = {j|〈i, j〉 ∈ E}. Then, each target distance dij is the length of the shortest
weighted path between i and j.

This simple change is surprisingly effective in many real life irregular graphs that
have highly non-uniform degree distributions. We present here two examples. The first
example is the 1138Bus graph (|V|=1138, |E|=1458) from the Matrix Market repository
[1]. This graph models a network of high-voltage power distribution lines. Figure 4
shows two layouts of this graph. In one layout, edges were weighted according to (13).
The other layout was made with unweighted edges. Nodes are much better dispersed
in the weighted-edge-based layout. By weighting edges, more space is allocated to the
dense areas, avoiding many of the edge crossings.

Another interesting example is a BGP connectivity graph representing communica-
tions between autonomous systems (|V|=3847, |E|=11539). This graph has a few nodes
of high degree (e.g., one node has degree 695 and a few others are around 100), as
well as 3257 nodes of degree 1. We show two layouts of this graph in Figure 5. Again,
it is clear that when weighting edges, the resulting layout is much more informative.
For example, in both layouts the central node is the one of degree 695. In the weighted
version, its neighborhood is placed far enough from it to make it fairly visible. In the un-
weighted version, however, all of its neighbors are positioned densely around it, hiding
its structure completely.

We have frequently found that when there are large deviations in edge lengths, as
in the BGP graph, classic Kamada-Kawai optimization fails to find a nice layout. The
result of Kamada-Kawai optimization on the edge-weighted BGP graph is shown in
Figure 6(a). It is clearly inferior to the majorization result shown in Figure 5. We also
compare the average stress-vs.-time behavior of the two methods in Figure 6(b), where
it is clear the Kamada-Kawai-type optimization is pretty helpless here. Although we
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Fig. 4. Two layouts of the 1138Bus graph [1]

do not fully understand this limitation of Kamada-Kawai optimization, it seems that
its local nature somehow limits its ability to deal with significantly unbalanced edge
lengths.

4 Related Work

Substantial work in statistical MDS deals with the properties of the majorization pro-
cess, including proofs of its convergence rate [3]. The MDS literature suggests solving
equation (9) by computing (Lw)+, the Moore-Penrose inverse of the singular matrix
Lw. Our suggestion to set X1 = 0 allows a much faster solution by Cholesky factoriza-
tion.

Several studies in the graph drawing field suggest improving stress computation
by multi-scale extensions [8, 10, 11], which approximate the graph by a smaller one,
to quickly obtain an initial layout. We see these approaches as complementary to our
proposal, as one can apply majorization to optimizing the stress at each scale. In general,
our recommendation is to get an initial placement either by multi-scale techniques or
by subspace-restricted computation [14].

Recent work by Koren and Harel [13] describes an algorithm for monotonically
decreasing the stress function in 1-D, and a heuristic extension to higher dimensions
whose convergence properties are unknown. It is easy to prove that this 1-D algorithm
is equivalent to 1-D majorization, although derived differently. Majorization, however,
is more powerful as it can be generalized to higher dimensions. Interestingly, the op-
timization process of [13] is equivalent to the full, n-D Newton-Raphson process. Ac-
cordingly, we conclude that in 1-D, the majorization process is equivalent to the full, n-
D Newton-Raphson process. This is unlike the Kamada-Kawai process which is based
on a localized 2-D Newton-Raphson process.
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Fig. 5. Two majorization-based layouts of BGP connectivity, with a skewed degree distribution.
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Fig. 6. (a) Layout of the edge weighted BGP connectivity graph using Kamada-Kawai optimiza-
tion. (b) Stress-vs.-time behavior of majorization and Kamada-Kawai on weighted BGP connec-
tivity example graph.

5 Conclusions
Majorization, a technique developed in studies of statistical MDS, is relevant to practi-
cal graph drawing. The MDS community has studied it extensively from the standpoint
of optimizing the stress function and escaping local minima. Further ideas along these
lines may also prove useful in graph drawing.

The main algorithms discussed here are available in the Neato program in the
Graphviz open source package [20].
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