
Using Graphviz as a Library
(cgraph version)

Emden R. Gansner

August 21, 2014

1



Graphviz Library Manual, August 21, 2014 2

Contents

1 Introduction 4
1.1 String-based layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 xdot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 plain-ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 GXL and GML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Graphviz as a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Basic graph drawing 8
2.1 Creating the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Attribute and HTML Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Laying out the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Rendering the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Drawing nodes and edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Cleaning up a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Inside the layouts 21
3.1 dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 neato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 fdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 sfdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 twopi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 circo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 The Graphviz context 25
4.1 Version-specific data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Graphics renderers 26
5.1 The GVJ t data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Inside the obj state t data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Color information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Adding Plug-ins 32
6.1 Writing a renderer plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Writing a device plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Writing an image loading plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Unconnected graphs 37

A Compiling and linking 42

B A sample program: simple.c 43

C A sample program: dot.c 44

D A sample program: demo.c 45



Graphviz Library Manual, August 21, 2014 3

E Some basic types and their string representations 46



Graphviz Library Manual, August 21, 2014 4

1 Introduction

The Graphviz package consists of a variety of software for drawing attributed graphs. It implements a
handful of common graph layout algorithms. These are:

dot A Sugiyama-style hierarchical layout [STT81, GKNV93].

neato A “symmetric” layout algorithm based on stress reduction. This is a variation of multidimensional
scaling [KS80, Coh87]. The default implementation uses stress majorization [GKN04]. An alternate
implementation uses the Kamada-Kawai algorithm [KK89]

fdp An implementation of the Fruchterman-Reingold force-directed algorithm [FR91] for “symmetric”
layouts. This layout is similar to neato, but there are performance and feature differences.

sfdp A multiscale force-directed layout using a spring-electrical model [Hu05].

twopi A radial layout as described by Wills [Wil97].

circo A circular layout combining aspects of the work of Six and Tollis [ST99, ST00] and Kaufmann and
Wiese [KW].

patchwork An implementation of squarified treemaps [BHvW00].

osage A layout algorithm for clustered graphs based on user specifications.

In addition, Graphviz provides an assortment of more general-purpose graph algorithms, such as transitive
reduction, which have proven useful in the context of graph drawing.

The package was designed [GN00] to rely on the “program-as-filter” model of software, in which dis-
tinct graph operations or transformations are embodied as programs. Graph drawing and manipulation are
achieved by using the output of one filter as the input of another, with each filter recognizing a common,
text-based graph format. One thus has an algebra of graphs, using a scripting language to provide the base
language with variables and function application and composition.

Despite the simplicity and utility of this approach, some applications need or desire to use the software
as a library with bindings in a non-scripting language, rather than as primitives composed using a scripting
language. The Graphviz software provides a variety of ways to achieve this, running a spectrum from very
simple but somewhat inflexible to fairly complex but offering a good deal of application control.

1.1 String-based layouts

The simplest mechanism for doing this consists of using the filter approach in disguise. The application,
perhaps using the Graphviz cgraph library, constructs a representation of a graph in the DOT language.
The application can then invoke the desired layout program, e.g., using system or popen on a Unix
system, passing the graph using an intermediate file or a pipe. The layout program computes position
information for the graph, attaches this as attributes, and delivers the graph back to the application through
another file or pipe. The application can then read in the graph, and apply the geometric information as
necessary. This is the approach used by many applications, e.g., dotty [KN94] and grappa [LBM97], which
rely on Graphviz.

There are several Graphviz output formats which can be used in this approach. As with all output
formats, they are specified by using a -T flag when invoking the layout program. The input to the programs
must always be in the DOT language.



Graphviz Library Manual, August 21, 2014 5

1.1.1 dot

This format relies on the DOT language to describe the graphs, with attributes attached as name-value pairs.
The cgraph library provides a parser for graphs represented in DOT. Using this, it is easy to read the

graphs and query the desired attributes using agget or agxget. For more information on these functions,
see Section 2.1.1. The string representations of the various types referred to are described in Appendix E.

On output, the graph will have a bb attribute of type rectangle, specifying the bounding box of the
drawing. If the graph has a label, its position is specified by the lp attribute of type point.

Each node gets pos, width and height attributes. The first has type point, and indicates the center
of the node in points. The width and height attributes are floating point numbers giving the width and
height, in inches, of the node’s bounding box. If the node has a record shape, the record rectangles are given
in the rects attribute. This has the format of a space-separated list of rectangles. If the node is a polygon
(including ellipses) and the vertices attribute is defined for nodes, this attribute will contain the vertices
of the node, in inches, as a space-separated list of pointf values. For ellipses, the curve is sampled, the
number of points used being controlled by the samplepoints attribute. The points are given relative
to the center of the node. Note also that the points only give the node’s basic shape; they do not reflect
any internal structure. If the node has peripheries greater than one, or a shape like "Msquare", the
vertices attribute does not represent the extra curves or lines.

Every edge is assigned a pos attribute having splineType type. If the edge has a label, the label
position is given in the lp of type point.

1.1.2 xdot

The xdot format is a strict extension of the dot format, in that it provides the same attributes as dot as
well as additional drawing attributes. These additional attributes specify how to draw each component of the
graph using primitive graphics operations. This can be particularly helpful in dealing with node shapes and
edge arrowheads. Unlike the information provided by the vertices attribute described above, the extra
attributes in xdot provide all geometric drawing information, including the various types of arrowheads
and multiline labels with variations in alignment. In addition, all the parameters use the same units.

There are six new attributes, listed in Table 1. These drawing attributes are only attached to nodes and
edges. Clearly, the last four attributes are only attached to edges.

draw General drawing operations
ldraw Label drawing operations
hdraw Head arrowhead
tdraw Tail arrowhead
hldraw Head label
tldraw Tail label

Table 1: xdot drawing attributes

The value of these attributes are strings consisting of the concatenation of some (multi-)set of the 7
drawing operations listed in Table 2. The color, font name, and style values supplied in the C, c, F , and S
operations have the same format and interpretation as the color, fontname, and style attributes in the
source graph.

In handling alignment, the application may want to recompute the string width using its own font draw-
ing primitives.

The text operation is only used in the label attributes. Normally, the non-text graphics operations are
only used in the non-label attributes. If, however, a node has shape="record" or an HTML-like label



Graphviz Library Manual, August 21, 2014 6

E x0 y0 w h Filled ellipse with equation ((x− x0)/w)
2 + ((y − y0)/h)

2 = 1
e x0 y0 w h Unfilled ellipse with equation ((x− x0)/w)

2 + ((y − y0)/h)
2 = 1

P n x1 y1 . . . xn yn Filled polygon with the given n vertices
p n x1 y1 . . . xn yn Unfilled polygon with the given n vertices
L n x1 y1 . . . xn yn Polyline with the given n vertices
B n x1 y1 . . . xn yn B-spline with the given n control points. n ≡ 1mod3 and n ≥ 4
b n x1 y1 . . . xn yn Filled B-spline with the given n control points. n ≡ 1mod3 and n ≥ 4
T x y j w n −c1c2 · · · cn Text drawn using the baseline point (x, y). The text consists of the n bytes

following ’-’. The text should be left-aligned (centered, right-aligned) on
the point if j is -1 (0, 1), respectively. The value w gives the width of the
text as computed by the library.

t f Set font characteristics. The integer f is the OR of BOLD=1, ITALIC=2,
UNDERLINE=4, SUPERSCRIPT=8, SUBSCRIPT=16, and STRIKE-
THROUGH=32.

C n −c1c2 · · · cn Set color used to fill closed regions. The color is specified by the n char-
acters following ’-’.

c n −c1c2 · · · cn Set pen color, the color used for text and line drawing. The color is speci-
fied by the n characters following ’-’.

F s n −c1c2 · · · cn Set font. The font size is s points. The font name is specified by the n
characters following ’-’.

S n −c1c2 · · · cn Set style attribute. The style value is specified by the n characters following
’-’.

I x y j w n −c1c2 · · · cn Externally-specified image drawn in the box with lower left corner (x, y)
and upper right corner (x+ w, y + h). The name of the image consists of
the n bytes following ’-’. This is usually a bitmap image. Note that the
image size, even when converted from pixels to points, might be different
from the required size (w, h). It is assumed the renderer will perform the
necessary scaling.

Table 2: xdot drawing operations

is involved, a label attribute may also contain various graphics operations. In addition, if the decorate
attribute is set on an edge, its label attribute will also contain a polyline operation.

All coordinates and sizes are in points. If an edge or node is invisible, no drawing operations are attached
to it.

1.1.3 plain

The plain format is line-based and very simple to parse. This works well for applications which need or
wish to avoid using the cgraph library. The price for this simplicity is that the format encodes very little
detailed layout information beyond basic position information. If an application needs more than what is
supplied in the format, it should use the dot or xdot format.

There are four types of lines: graph, node, edge and stop. The output consists of a single graph
line; a sequence of node lines, one for each node; a sequence of edge lines, one for each edge; and a
single terminating stop line. All units are in inches, represented by a floating point number.

As noted, the statements have very simple formats.

graph scale width height



Graphviz Library Manual, August 21, 2014 7

node name x y width height label style shape color fillcolor
edge tail head n x1 y1 ... xn yn [label xl yl] style color
stop

We now describe the statements in more detail.

graph The width and height values give the width and height of the drawing. The lower left corner of
the drawing is at the origin. The scale value indicates how the drawing should be scaled if a size
attribute was given and the drawing needs to be scaled to conform to that size. If no scaling is
necessary, it will be set to 1.0. Note that all graph, node and edge coordinates and lengths are given
unscaled.

node The name value is the name of the node, and x and y give the node’s position. The width and height
are the width and height of the node. The label, style, shape, color and fillcolor values give the node’s
label, style, shape, color and fillcolor, respectively, using default attribute values where necessary. If
the node does not have a style attribute, "solid" is used.

edge The tail and head values give the names of the head and tail nodes. n is the number of control
points defining the B-spline forming the edge. This is followed by 2 ∗ n numbers giving the x and
y coordinates of the control points in order from tail to head. If the edge has a label attribute,
this comes next, followed by the x and y coordinates of the label’s position. The edge description is
completed by the edge’s style and color. As with nodes, if a style is not defined, "solid" is used.

1.1.4 plain-ext

The plain-ext format is identical with the plain format, except that port names are attached to the
node names in an edge, when applicable. It uses the usual DOT representation, where port p of node n is
given as n:p.

1.1.5 GXL and GML

The GXL [Win02] dialect of XML and GML [Him] are a widely used standards for representing attributed
graphs as text, especially in the graph drawing and software engineering communities. There are many tools
available for parsing and analyzing graphs represented in these formats. And, as GXL is based on XML, it
is amenable to the panoply of XML tools.

Various graph drawing and manipulation packages either use GXL or GML as their main graph lan-
guage, or provide a translator. In this, Graphviz is no different. We supply the programs gv2gxl, gxl2gv,
gv2gml and gml2gv for converting between the DOT and these formats. Thus, if an application is XML-
based, to use the Graphviz tools, it needs to insert these filters as appropriate between its I/O and the
Graphviz layout programs.

1.2 Graphviz as a library

The role of this document is to describe how an application can use the Graphviz software as a library rather
than as a set of programs. It will describe the intended API at various levels, concentrating on the purpose
of the functions from an application standpoint, and the way the library functions should be used together,
e.g., that one has to call function A before function B. The intention is not to provide detailed manual pages,
partly because most of the functions have a high-level interface, often just taking a graph pointer as the
sole argument. The real semantic details are embedded in the attributes of the graph, which are described
elsewhere.



Graphviz Library Manual, August 21, 2014 8

The remainder of this manual describes how to build an application using Graphviz as a library in the
usual sense. The next section presents the basic technique for using the Graphviz code. Since the other
approaches are merely ramifications and extensions of the basic approach, the section also serves as an
overview for all uses. Section 3 breaks each layout algorithm apart into its individual steps. With this
information, the application has the option of eliminating certain of the steps. For example, all of the layout
algorithms can layout edges as splines. If the application intends to draw all edges as line segments, it would
probably wish to avoid the spline computation, especially as it is moderately expensive in terms of time.
Section 2.3 explains how an application can invoke the Graphviz renderers, thereby generating a drawing
of a graph in a concrete graphics format such as png or PostScript. For an application intending to do its
own rendering, Section 5 recommends a technique which allows the Graphviz library to handle all of the
bookkeeping details related to data structures and machine-dependent representations while the application
need only supply a few basic graphics functions. Section 7 discusses an auxiliary library for dealing with
graphs containing multiple connected components.

N.B. Using Graphviz as a library is not thread-safe.

2 Basic graph drawing

Figure 1 gives a template for the basic library use of Graphviz, in this instance using the dot hierarchical
layout. (Appendix B provides the listing of the complete program.) Basically, the program creates a graph
using the cgraph library, setting node and edge attributes to affect how the graph is to be drawn; calls the
layout code; and then uses the position information attached to the nodes and edges to render the graph.
The remainder of this section explores these steps in more detail.

Agraph_t* G;
GVC_t* gvc;

gvc = gvContext(); /* library function */
G = createGraph ();
gvLayout (gvc, G, "dot"); /* library function */
drawGraph (G);
gvFreeLayout(gvc, g); /* library function */
agclose (G); /* library function */
gvFreeContext(gvc);

Figure 1: Basic use

Here, we just note the gvc parameter. This is a handle to a Graphviz context, which contains drawing
and rendering information independent of the properties pertaining to a particular graph as well as vari-
ous state information. For the present, we view this an abstract parameter required for various Graphviz
functions. We will discuss it further in Section 4.

2.1 Creating the graph

The first step in drawing a graph is to create it. To use the Graphviz layout software, the graph must be
created using the cgraph library.

We can create a graph in one of two main ways, using agread or agopen. The former function takes
a FILE* pointer to a file open for reading.



Graphviz Library Manual, August 21, 2014 9

FILE* fp;
Agraph_t* G = agread(fp, 0);

It is assumed the file contains the description of graphs using the DOT language. The agread function
parses one graph at a time, returning a pointer to an attributed graph generated from the input, or NULL if
there are no more graphs or an error occurred.

The Graphviz library provides several specialized variations of agread. If the DOT representation of
the graph is stored in memory at char* cp, then

Agraph_t* G = agmemread(cp);

can be used to parse the representation. By default, the agread function relies on the standard FILE
structure and fgets function of the stdio library. You can supply your own data source dp coupled with
your own discipline disc for reading the data to read a graph using

Agraph_t* G = agread(dp, &disc);

Further details on using agread and disciplines can be found in the cgraph library manual.
The alternative technique is to call agopen.

Agraph_t* G = agopen(name, type, &disc);

The first argument is a char* giving the name of the graph; the second argument is an Agdesc t value
describing the type of graph to be created. A graph can be directed or undirected. In addition, a graph can
be strict, i.e., have at most one edge between any pair of nodes, or non-strict, allowing an arbitrary number
of edges between two nodes. If the graph is directed, the pair of nodes is ordered, so the graph can have
edges from node A to node B as well as edges from B to A. These four combinations are specified by the
values in Table 3. The return value is a new graph, with no nodes or edges. So, to open a graph named

Graph Type Graph
Agundirected Non-strict, undirected graph
Agstrictundirected Strict, undirected graph
Agdirected Non-strict, directed graph
Agstrictdirected Strict, directed graph

Table 3: Graph types

"network" that is directed but not strict, one would use

Agraph_t* G = agopen("network", Agdirected, 0);

The third argument is a pointer to a discipline of functions used for reading, memory, etc. If the value of 0
or NULL is used, the library uses a default discipline.

Nodes and edges are created by the functions agnode and agedge, respectively.

Agnode_t *agnode(Agraph_t*, char*, int);
Agedge_t *agedge(Agraph_t*, Agnode_t*, Agnode_t*, char*, int);

The first argument is the graph containing the node or edge. Note that if this is a subgraph, the node or edge
will also belong to all containing graphs. The second argument to agnode is the node’s name. This is a key
for the node within the graph. If agnode is called twice with the same name, the second invocation will
not create a new node but simply return a pointer to the previously created node with the given name. The



Graphviz Library Manual, August 21, 2014 10

third argument specifies whether or not a node of the given name should be created if it does not already
exist.

Edges are created using agedge by passing in the edge’s two nodes. If the graph is not strict, additional
calls to agedge with the same arguments will create additional edges between the two nodes. The string
argument allows you to supply a further name to distinguish between edges with the same head and tail.
If the graph is strict, extra calls will simply return the already existing edge. For directed graphs, the first
and second node arguments are taken to be the tail and head nodes, respectively. For undirected graph, they
still play this role for the functions agfstout and agfstin, but when checking if an edge exists with
agedge or agfindedge, the order is irrelevant. As with agnode, the final argument specifies whether
or not the edge should be created if it does not yet exist.

As suggested above, a graph can also contain subgraphs. These are created using agsubg:

Agraph_t *agsubg(Agraph_t*, char*, int);

The first argument is the immediate parent graph; the second argument is the name of the subgraph; the final
argument indicates if the subgraph should be created.

Subgraphs play three roles in Graphviz. First, a subgraph can be used to represent graph structure,
indicating that certain nodes and edges should be grouped together. This is the usual role for subgraphs
and typically specifies semantic information about the graph components. In this generality, the drawing
software makes no use of subgraphs, but maintains the structure for use elsewhere within an application.

In the second role, a subgraph can provide a context for setting attributes. In Graphviz, these are often
attributes used by the layout and rendering functions. For example, the application could specify that blue
is the default color for nodes. Then, every node within the subgraph will have color blue. In the context of
graph drawing, a more interesting example is:

subgraph {
rank = same; A; B; C;

}

This (anonymous) subgraph specifies that the nodes A, B and C should all be placed on the same rank if
drawn using dot.

The third role for subgraphs combines the previous two. If the name of the subgraph begins with
"cluster", Graphviz identifies the subgraph as a special cluster subgraph. The drawing software1 will
do the layout of the graph so that the nodes belonging to the cluster are drawn together, with the entire
drawing of the cluster contained within a bounding rectangle.

We note here some important fields used in nodes, edges and graphs. If np, ep and gp are pointers to a
node, edge and graph, respectively, agnameof(np) and agraphof(np) give the name of the node and
the root graph containing it, agtail(ep) and aghead(ep) give the tail and head nodes of the edge,
and agroot(gp) gives the root graph containing the subgraph. For the root graph, this field will point to
itself.

2.1.1 Attributes

In addition to the abstract graph structure provided by nodes, edges and subgraphs, the Graphviz libraries
also support graph attributes. These are simply string-valued name/value pairs. Attributes are used to specify
any additional information which cannot be encoded in the abstract graph. In particular, the attributes are
heavily used by the drawing software to tailor the various geometric and visual aspects of the drawing.

1if supported



Graphviz Library Manual, August 21, 2014 11

Reading attributes is easily done. The function agget takes a pointer to a graph component (node,
edge or graph) and an attribute name, and returns the value of the attribute for the given component. Note
that the function may return either NULL or a pointer to the empty string. The first value indicates that
the given attribute has not been defined for any component in the graph of the given kind. Thus, if abc
is a pointer to a node and agget(abc,"color") returns NULL, then no node in the root graph has a
color attribute. If the function returns the empty string, this usually indicates that the attribute has been
defined but the attribute value associated with the specified object is the default for the application. So, if
agget(abc,"color") now returns "", the node is taken to have the default color. In practical terms,
these two cases are very similar. Using our example, whether the attribute value is NULL or "", the drawing
code will still need to pick a color for drawing and will probably use the default in both cases.

Setting attributes is a bit more complex. Before attaching an attribute to a graph component, the code
must first set up the default case. This is accomplished by a call to agattr. It takes a graph, an object
type (AGRAPH, AGNODE, AGEDGE), and two strings as arguments, and return a representation of the
attribute. The first string gives the name of the attribute; the second supplies the default value. The graph
must be the root graph.

Once the attribute has been initialized, the attribute can be set for a specific component by calling

agset (void*, char*, char*)

with a pointer to the component, the name of the attribute and the value to which it should be set. For
example, the call

agset (np, "color", "blue");

sets the color of node np to "blue". The attribute value must not be NULL.
For simplicity, the cgraph library provides the function

agsafeset(void*, char*, char*, char*)

the first three arguments being the same as those of agset. This function first checks that the named
attribute has been declared for the given graph component. If it has not, it declares the attribute, using its
last argument as the required default value. It then sets the attribute value for the specific component.

Note that some attributes are replicated in the graph, appearing once as the usual string-valued attribute,
and also in an internal machine format such an int, double or some more structured type. An application
should only set attributes using strings and agset. The implementation of the layout algorithm may change
the machine-level representation at any time. Hence, the low-level interface cannot be relied on by the
application to supply the desired input values. Also note that there is not a one-to-one correspondence
between string-valued attributes and internal attributes. A given string attribute might be encoded as part of
some data structure, might be represented via multiple fields, or may have no internal representation at all.

In order to expedite the reading and writing of attributes for large graphs, Graphviz provides a lower-
level mechanism for manipulating attributes which can avoid hashing a string. Attributes have a representa-
tion of type Agsym_t. This is basically the value returned by the initialization function agattr. (Passing
NULL as the default value will cause agattr to return the Agsym_t if it exists, and NULL otherwise.) An
attribute can also be obtained by a call to agattrsym, which takes a graph component and an attribute
name. If the attribute has been defined, the function returns a pointer to the corresponding Agsym_t value.
This can be used to directly access the corresponding attribute value, using the functions agxget and
agxset. These are identical to agget and agset, respectively, except that instead of taking the attribute
name as the second argument, they use the Agsym_t value to access the attribute value from an array.

Due to the nature of the implementation of attributes in Graphviz, an application should, if possible,
attempt to define and initialize all attributes before creating nodes and edges.



Graphviz Library Manual, August 21, 2014 12

The drawing algorithms in Graphviz use a large collection of attributes, giving the application a great
deal of control over the appearance of the drawing. For more detailed and complete information on what the
attributes mean, the reader should consult the page http://www.graphviz.org/content/attrs.

Here, we consider some of the more commonly used attributes. We can divide the attributes into those
that affect the placement of nodes, edges and clusters in the layout and those, such as color, which do
not. Table 4 gives the node attributes which have the potential to change the layout. This is followed by
Tables 5, 6 and 7, which do the same for edges, graphs, and clusters. Note that in some cases, the effect

Name Default Use
distortion 0.0 node distortion for shape=polygon
fixedsize false label text has no affect on node size
fontname Times-Roman font family
fontsize 14 point size of label
group name of node’s group
height .5 height in inches
label node name any string
margin 0.11,0.055 space between node label and boundary
orientation 0.0 node rotation angle
peripheries shape dependent number of node boundaries
pin false fix node at its pos attribute
regular false force polygon to be regular
root indicates node should be used as root of a layout
shape ellipse node shape
shapefile † external EPSF or SVG custom shape file
sides 4 number of sides for shape=polygon
skew 0.0 skewing of node for shape=polygon
width .75 width in inches
z 0.0 † z coordinate for VRML output

Table 4: Geometric node attributes

Name Default Use
constraint true use edge to affect node ranking
fontname Times-Roman font family
fontsize 14 point size of label
headclip true clip head end to node boundary
headport center position where edge attaches to head node
label edge label
len 1.0/0.3 preferred edge length
lhead name of cluster to use as head of edge
ltail name of cluster to use as tail of edge
minlen 1 minimum rank distance between head and tail
samehead tag for head node; edge heads with the same tag

are merged onto the same port
sametail tag for tail node; edge tails with the same tag are

merged onto the same port
tailclip true clip tail end to node boundary
tailport center position where edge attaches to tail node
weight 1 importance of edge

Table 5: Geometric edge attributes

is indirect. An example of this is the nslimit attribute, which potentially reduces the effort spent on
network simplex algorithms to position nodes, thereby changing the layout. Some of these attributes affect
the initial layout of the graph in universal coordinates. Others only play a role if the application uses the
Graphviz renderers (cf. Section 2.3), which map the drawing into device-specific coordinates related to a



Graphviz Library Manual, August 21, 2014 13

Name Default Use
center false † center drawing on page
clusterrank local may be global or none
compound false allow edges between clusters
concentrate false enables edge concentrators
defaultdist 1 + (

∑
e∈E

len)/|E|
√
|V | separation between nodes in different components

dim 2 dimension of layout
dpi 96/0 dimension of layout
epsilon .0001|V | or .0001 termination condition
fontname Times-Roman font family
fontpath list of directories to such for fonts
fontsize 14 point size of label
label † any string
margin † space placed around drawing
maxiter layout dependent bound on iterations in layout
mclimit 1.0 scale factor for mincross iterations
mindist 1.0 minimum distance between nodes
mode major variation of layout
model shortpath model used for distance matrix
nodesep .25 separation between nodes, in inches
nslimit if set to f, bounds network simplex iterations by

(f)(number of nodes) when setting x-coordinates
ordering specify out or in edge ordering
orientation portrait † use landscape orientation if rotate is not used

and the value is landscape
overlap true specify if and how to remove node overlaps
pack do components separately, then pack
packmode node granularity of packing
page † unit of pagination, e.g. "8.5,11"
quantum if quantum > 0.0, node label dimensions will be

rounded to integral multiples of quantum
rank same, min, max, source or sink
rankdir TB sense of layout, i.e, top to bottom, left to right, etc.
ranksep .75 separation between ranks, in inches.
ratio approximate aspect ratio desired, fill or auto
remincross If true and there are multiple clusters, re-run cross-

ing minimization
resolution synonym for dpi
root specifies node to be used as root of a layout
rotate † If 90, set orientation to landscape
searchsize 30 maximum edges with negative cut values to check

when looking for a minimum one during network
simplex

sep 0.1 factor to increase nodes when removing overlap
size maximum drawing size, in inches
splines render edges using splines
start random manner of initial node placement
voro margin 0.05 factor to increase bounding box when more space

is necessary during Voronoi adjustment
viewport †Clipping window

Table 6: Geometric graph attributes



Graphviz Library Manual, August 21, 2014 14

Name Default Use
fontname Times-Roman font family
fontsize 14 point size of label
label edge label
peripheries 1 number of cluster boundaries

Table 7: Geometric cluster attributes

concrete output format. For example, Graphviz only uses the center attribute, which specifies that the
graph drawing should be centered within its page, when the library generates a concrete representation. The
tables distinguish these device-specific attributes by a † symbol at the start of the Use column.

Tables 8, 9, 10 and 11 list the node, edge, graph and cluster attributes, respectively, that do not effect
the placement of components. Obviously, the values of these attributes are not reflected in the position
information of the graph after layout. If the application handles the actual drawing of the graph, it must
decide if it wishes to use these attributes or not.

Name Default Use
color black node shape color
fillcolor lightgrey node fill color
fontcolor black text color
layer overlay range all, id or id:id
nojustify false context for justifying multiple lines of text
style style options, e.g. bold, dotted, filled

Table 8: Decorative node attributes

Name Default Use
arrowhead normal style of arrowhead at head end
arrowsize 1.0 scaling factor for arrowheads
arrowtail normal style of arrowhead at tail end
color black edge stroke color
decorate if set, draws a line connecting labels with their

edges
dir forward/none forward, back, both, or none
fontcolor black type face color
headlabel label placed near head of edge
labelangle -25.0 angle in degrees which head or tail label is rotated

off edge
labeldistance 1.0 scaling factor for distance of head or tail label from

node
labelfloat false lessen constraints on edge label placement
labelfontcolor black type face color for head and tail labels
labelfontname Times-Roman font family for head and tail labels
labelfontsize 14 point size for head and tail labels
layer overlay range all, id or id:id
nojustify false context for justifying multiple lines of text
style drawing attributes such as bold, dotted, or

filled
taillabel label placed near tail of edge

Table 9: Decorative edge attributes

Among these attributes, some are used more frequently than others. A graph drawing typically needs to
encode various application-dependent properties in the representations of the nodes. This can be done with
text, using the label, fontname and fontsize attributes; with color, using the color, fontcolor,



Graphviz Library Manual, August 21, 2014 15

Name Default Use
bgcolor background color for drawing, plus initial fill color
charset UTF-8 character encoding for text
fontcolor black type face color
labeljust centered left, right or center alignment for graph labels
labelloc bottom top or bottom location for graph labels
layers names for output layers
layersep "�:" separator characters used in layer specification
nojustify false context for justifying multiple lines of text
outputorder breadthfirst order in which to emit nodes and edges
pagedir BL traversal order of pages
samplepoints 8 number of points used to represent ellipses and cir-

cles on output
stylesheet XML stylesheet
truecolor determines truecolor or color map model for

bitmap output

Table 10: Decorative graph attributes

Name Default Use
bgcolor background color for cluster
color black cluster boundary color
fillcolor black cluster fill color
fontcolor black text color
labeljust centered left, right or center alignment for cluster labels
labelloc top top or bottom location for cluster labels
nojustify false context for justifying multiple lines of text
pencolor black cluster boundary color
style style options, e.g. bold, dotted, filled;

Table 11: Decorative cluster attributes



Graphviz Library Manual, August 21, 2014 16

fillcolor and bgcolor attributes; or with shapes, the most common attributes being shape, height,
width, style, fixedsize, peripheries and regular,

Edges often display additional semantic information with the color and style attributes. If the edge
is directed, the arrowhead, arrowsize, arrowtail and dir attributes can play a role. Using splines
rather than line segments for edges, as determined by the splines attribute, is done for aesthetics or clarity
rather than to convey more information.

There are also a number of frequently used attributes which affect the layout geometry of the nodes
and edges. These include compound, len, lhead, ltail, minlen, nodesep, pin, pos, rank,
rankdir, ranksep and weight. Within this category, we should also mention the pack and overlap
attributes, though they have a somewhat different flavor.

The attributes described thus far are used as input to the layout algorithms. There is a collection of
attributes, displayed in Table 12, which, by convention, Graphviz uses to specify the geometry of a layout.
After an application has used Graphviz to determine position information, if it wants to write out the graph

Name Use
bb bounding box of drawing or cluster
lp position of graph, cluster or edge label
pos position of node or edge control points
rects rectangles used in records
vertices points defining node’s boundary, if requested

Table 12: Output position attributes

in DOT with this information, it should use the same attributes.
In addition to the attributes described above which have visual effect, there is a collection of attributes

used to supply identification information or web actions. Table 13 lists these.

Name Use
URL hyperlink associated with node, edge, graph or cluster
comment comments inserted into output
headURL URL attached to head label
headhref synonym for headURL
headtarget browser window associated with headURL
headtooltip tooltip associated with headURL
href synonym for URL
tailURL URL attached to tail label
tailhref synonym for tailURL
tailtarget browser window associated with tailURL
tailtooltip tooltip associated with tailURL
target browser window associated with URL
tooltip tooltip associated with URL

Table 13: Miscellaneous attributes

2.1.2 Attribute and HTML Strings

When an attribute is assigned a value, the graph library replicates the string. This means the application
can use a temporary string as the argument; it does not have to keep the string throughout the application.
Each node, edge, and graph maintains its own attribute values. Obviously, many of these are the same
strings, so to save memory, the graph library uses a reference counting mechanism to share strings. An
application can employ this mechanism by using the agstrdup() function. If it does, it must also use the
agstrfree() function if it wishes to release the string.



Graphviz Library Manual, August 21, 2014 17

When using strings as labels, one can have some formatting control via the various inline escape se-
quences such as "\n", "\l", "\N", etc., and attributes such as fontname and fontcolor. To get
a great deal more flexibility, one can use HTML-like labels. In the DOT language, these strings are de-
limited by angle brackets <...> rather than double quotes in order to be work seamlessly with ordinary
strings. Even at the library level, these strings are semantically identical to ordinary strings except when
used as labels. To create one of these, one uses agstrdup html() rather than agstrdup(). The
agstrfree() is still used to release the string. For example, one might use the following code to attach
an HTML string to a node:

Agnode_t* n;
char* l = agstrdup_html(agroot(n), "<B>some bold text</B>");
agset (n,"label",l);
agstrfree (l);

In addition, the function aghtmlstr() can be used query if an attribute string is an HTML string.

2.2 Laying out the graph

Once the graph exists and the attributes are set, the application can pass the graph to one of the Graphviz
layout functions by a call to gvLayout. As arguments, this function takes a pointer to a GVC t, a pointer
to the graph to be laid out, and the name of the desired layout algorithm. The algorithm names are the same
as those of the layout programs listed in Section 1. Thus, "dot" is used to invoke dot, etc.2

The layout algorithm will do everything that the corresponding program would do, given the graph and
its attributes. This includes assigning node positions, representing edges as splines3, handling the special
case of an unconnected graph, plus dealing with various technical features such as preventing node overlaps.

There are two special layout engines available in the library: "nop" and "nop2". These correspond to
running the neato command with the flags -n and -n2, respectively. That is, they assume the input graph
already has position information stored for nodes and, in the latter case, some edges. They can be used to
route edges in the graph or perform other adjustments. Note that they expect the position information to be
stored as pos attributes in the nodes and edges. The application can do this itself, or use the dot renderer.

For example, if one wants to position the nodes of a graph using a dot layout, but wants edges drawn as
line segments, one could use the following code shown in Figure 2. The first call to gvLayout lays out the
graph using dot; the first call to gvRender attaches the computed position information to the nodes and
edges. The second call to gvLayout adds straight-line edges to the already positioned nodes; the second
call to gvRender outputs the graph in png for on stdout.

2.3 Rendering the graph

Once the layout is done, the graph data structures contain the position information for drawing the graph.
The application needs to decide how to use this information.

To use the renderers supplied with the Graphviz software, the application can call one of the library
functions

gvRender (GVC_t *gvc, Agraph_t* g, char *format, FILE *out);
gvRenderFilename (GVC_t *gvc, Agraph_t* g, char *format, char *filename);

2Usually, all of these algorithms are available. It is possible, however, that an application can arrange to have only a subset
made available.

3Line segments are represented as degenerate splines.



Graphviz Library Manual, August 21, 2014 18

Agraph_t* G;
GVC_t* gvc;

/*
* Create gvc and graph

*/

gvLayout (gvc, G, "dot");
gvRender (gvc, G, "dot", NULL);
gvFreeLayout(gvc, G);
gvLayout (gvc, G, "nop");
gvRender (gvc, G, "png", stdout);
gvFreeLayout(gvc, G);
agclose (G);

Figure 2: Basic use

The first and second arguments are a graphviz context handle and a pointer to the graph to be rendered. The
final argument gives, respecitively, a file stream open for writing or the name of a file to which the graph
should be written. The third argument names the renderer to be used, such as "ps", "png" or "dot".
The allowed strings are the same ones used with the -T flag when the layout program is invoked from a
command shell.

After a graph has been laid out using gvLayout, an application can perform multiple calls to the
rendering functions. A typical instance might be

gvLayout (gvc, g, "dot");
gvRenderFilename (gvc, g, "png", "out.png");
gvRenderFilename (gvc, g, "cmap", "out.map");

in which the graph is laid out using the dot algorithm, followed by PNG bitmap output and a corresponding
map file which can be used in a web browser.

As with reading, Graphviz provides some specialized functions for rendering. Of note is

gvRenderData (GVC_t *gvc, Agraph_t* g, char *format, char **result,
unsigned int *length)

which writes the output of the rendering onto an allocated character buffer. A pointer to this buffer is
returned in *result and the number of bytes written is stored in length. After using the buffer, the
memory should be freed by the application. As the calling program may rely on a different run-time system
than that used by Graphviz, the library provides the function

gvFreeRenderData (char *data);

which can be used to free the memory pointed to by *result.
Sometimes, an application will decide to do its own rendering. An application-supplied drawing routine,

such as drawGraph in Figure 1 can then read this information, map it to display coordinates, and call
routines to render the drawing.

One simple way to do this is to use the position and drawing information as supplied by the dot or
xdot format (see Sections 1.1.1 and 1.1.2). To get this, the application can call the appropriate renderer,



Graphviz Library Manual, August 21, 2014 19

passing a NULL stream pointer to gvRender4 as in Figure 2. This will attach the information as string
attributes. The application can then use agget to read the attributes.

On the other hand, an application may desire to read the primitive data structures used by the algorithms
to record the layout information. In the remainder of this section, we describe in reasonable detail these data
structures. An application can use these values directly to guide its drawing. In some cases, for example,
with arrowheads attached to bezier values or HTML-like labels, it would be onerous for an application to
fully interpret the data. For this reason, if an application wishes to provide all of the graphics features while
avoiding the low-level details of the data structures, we suggest either using xdot approach, described
above, or supplying its own renderer plug-in as described in Section 5.

The Graphviz layout algorithms rely on a specific set of fields to record position and drawing informa-
tion. Thus, the definitions of the information fields are fixed by the layout library and cannot be altered by
the application.5

The fields should only be accessed using macro expressions provided for this purpose. Thus, if np is
a node pointer, the width field should be read using ND_width(np). Edge and graph attributes follow
the same convention, with prefixes ED_ and GD_, respectively. A complete list of these macros is given in
types.h, along with various auxiliary types such as pointf or bezier 6.

We now consider the principal fields providing position information.
Each node has ND coord, ND width and ND height attributes. The value of ND coord gives the

position of the center of the node, in points.7 The ND width and ND height attributes specify the size of
the bounding box of the node, in inches. Note that the width and height attributes provide in the input
graph are minimum values, so that the values stored in ND width and ND height may be larger.

Edges, even if a line segment, are represented as cubic B-splines or piecewise Bezier curves. The
ED spl attribute of the edge stores this spline information. It has a pointer to an array of 1 or more
bezier structures. Each of these describes a single piecewise Bezier curve as well as associated arrowhead
information. Normally, a single bezier structure is sufficient to represent an edge. In some cases, however,
the edge may need multiple bezier parts, as when the concentrate attribute is set, whereby mostly
parallel edges are represented by a shared spline. Of course, the application always has the possibility of
drawing a line segment connecting the centers of the edge’s nodes.

If a subgraph is specified as a cluster, the nodes of the cluster will be drawn together and the entire
subgraph is contained within a rectangle containing no other nodes. The rectangle is specified by the GD bb
attribute of the subgraph, the coordinates in points in the global coordinate system.

2.3.1 Drawing nodes and edges

With the position and size information described above, an application can draw the nodes and edges of
a graph. It could just use rectangles or circles for nodes, and represent edges as line segments or splines.

4This convention only works, and only makes sense, with the dot and xdot renderers. For other renders, a NULL stream will
cause output to be written on stdout.

5This is a limitation of the cgraph library. We plan to remove this restriction by moving to a mechanism which allows arbitrary
dynamic extensions to the node, edge and graph structures. Meanwhile, if the application requires the addition of extra fields, it
can define its own structures, which should be extensions of the components of the information types, with the additional fields
attached at the end. Then, instead of calling aginit(), it can use the more general aginitlib(), and supply the sizes of its
nodes, edges and graphs. This will ensure that these components will have the correct sizes and alignments. The application can
then cast the generic cgraph types to the types it defined, and access the additional fields.

6We strongly deprecate accessing the fields directly, for the usual reason of good programming style. By using the macros,
source code will not be affected by any changes to the how the value is provided

7The neato and fdp layouts allow the graph to specify fixed positions for nodes. Unfortunately, some post-processing done in
Graphviz translates the layout so that its lower-left corner is at the origin. To recover the original coordinates, the application will
need to translate all positions by the vector p0− p, where p0 and p are the input position and the final position of some node whose
position was fixed.



Graphviz Library Manual, August 21, 2014 20

However, nodes and edges typically have a variety of other attributes, such as color or line style, which an
application can read from the appropriate fields and use in its rendering.

Additional drawing information about the node depends mostly on the shape of the node. For record-
type nodes, where ND_shape(n)->name is "record" or "Mrecord", the node consists of a packed
collection of rectangles. In this case, ND_shape_info(n) can be cast to field_t*, which describes
the recursive partition of the node into rectangles. The value b of field_t gives the bounding rectangle
of the field, in points in the coordinate system of the node, i.e., where the center of the node is at the origin.

If ND_shape(n)->usershape is true, the shape is specified by the user. Typically, this is format
dependent, e.g., the node might be specified by a GIF image, and we ignore this case for the present.

The final node class consists of those with polygonal shape8, which includes the limiting cases of circles,
ellipses, and none. In this case, ND_shape_info(n) can be cast to polygon_t*, which specifies the
many parameters (number of sides, skew and distortions, etc.) used to describe polygons, as well as the
points used as vertices. Note that the vertices are in inches, and are in the coordinate system of the node,
with the origin at the center of the node.

To handle a node’s shape, an application has two basic choices. It can implement the geometry for each
of the different shapes. Thus, it could see that ND_shape(n)->name is "box", and use the ND coord,
ND width and ND height attributes to draw rectangle at the given position with the given width and
height. A second approach would be to use the specification of the shape as stored internally in the
shape info field of the node. For example, given a polygonal node, its ND_shape_info(n) field
contains a vertices field, mentioned above, which is an ordered list of all the vertices used to draw the
appropriate polygon, taking into account multiple peripheries. Again, if an application desires to be fully
faithful in the rendering, it may be preferable to use the xdot information or to supply its own renderer
plugin.

For edges, each bezier structure has a list field pointing to an array containing the control points
and a size field giving the number of points in list, which will always have the form (3 ∗ n+1). In ad-
dition, there are fields for specifying arrowheads. If bp points to a bezier structure and the bp->sflag
field is true, there should be an arrowhead attached to the beginning of the bezier. The field bp->sp gives
the point where the nominal tip of the arrowhead would touch the tail node. (If there is no arrowhead,
bp->list[0] will touch the node.) Thus, the length and direction of the arrowhead is determined by the
vector going from bp->list[0] to bp->sp. The actual shape and width of the arrowhead is determined
by the arrowtail and arrowsize attributes. Analogously, an arrowhead at the head node is specified
by bp->eflag and the vector from bp->list[bp->size-1] to bp->ep.

The label field (ND_label(n), ED_label(e), GD_label(g)) encodes any text label associated
with a graph object. Edges, graphs and clusters will occasionally have labels; nodes almost always have a
label, since the default label is the node’s name. The basic label string is stored in the text field, while the
fontname, fontcolor and fontsize fields describe the basic font characteristics. In many cases, the
basic label string is further parsed, either into multiple, justified text lines, or as a nested box structure for
HTML-like labels or nodes of record shape. This information is available in other fields.

2.4 Cleaning up a graph

Once all layout information is obtained from the graph, the resources should be reclaimed. To do this, the
application should call the cleanup routine associated with the layout algorithm used to draw the graph.
This is done by a call to gvFreeLayout.

The example of Figure 1 demonstrates the case where the application is drawing a single graph. The
example given in Appendix C shows how cleanup might be done when processing multiple graphs.

8This is not quite true but close enough for now.



Graphviz Library Manual, August 21, 2014 21

The application can best determine when it should clean up. The example in the appendix performs
this just before a new graph is drawn, but the application could have done this much earlier, for example,
immediately after the graph is drawn using gvRender. Note, though, that layout information is destroyed
during cleanup. If the application needs to reuse this data, for example, to refresh the display, it should
delay calling the cleanup function, or arrange to copy the layout data elsewhere. Also, in the simplest case
where the application just draws one graph and exits, there is no need to do cleanup at all, though this is
sometimes considered poor programming style.

A given graph can be laid out multiple times. The application, however, must clean up the earlier
layout’s information with a call to gvFreeLayout before invoking a new layout function. An example of
this was given in Figure 2.

Note that if you render a graph into the dot or xdot format, this attaches attributes onto the graph.
Some of these attributes are used during layout. For example, the neato layout will use the pos attribute
of the nodes for an initial layout, while the twopi layout may set the root attribute, which will lock in
this attribute for any future layouts using twopi. To avoid having these attributes affecting another layout
of the graph, the user should should set these attributes to the empty string before calling gvLayout again.

Once the application is totally done with a graph, it should call agclose to close the graph and reclaim
the remaining resources associated with it.

3 Inside the layouts

Each Graphviz layout algorithm consists of multiple steps, some of which are optional. As the only entry
point in the Graphviz library for laying out a graph is the function gvLayout, the control of which steps
are used is determined by graph attributes, in the same way this is controlled when passing a graph to one
of the layout programs. In this section, we provide a high-level description of the layout steps, and note the
relevant attributes.

Here, we will assume that the graph is connected. All of the layouts handle unconnected graphs. Some-
times, though, an application may not want to use the built-in technique. For these cases, Graphviz provides
tools for decomposing a graph, and then combining multiple layouts. This is described in Section 7.

In all of the algorithms, the first step is to call a layout-specific initialization function. These func-
tions initialize the graph for the particular algorithm. This will first call common routines to set up basic
data structures, especially those related to the final layout results and code generation. In particular, the
size and shape of nodes will have been analyzed and set at this point, which the application can access
via the ND width, ND height, ND ht, ND lw, ND rw, ND shape, ND shape info and ND label
attributes. Initialization will then establish the data structures specific to the given algorithm. Both the
generic and specific layout resources are released when the corresponding cleanup function is called in
gvFreeLayout (cf. Section 2.4).

By default, the layout algorithms position the edges as well as the nodes of the graph. As this may be
expensive to compute and irrelevant to an application, an application may decide to avoid this. This can be
achieved by setting the graph’s splines attribute to the empty string "".

The algorithms all end with a postprocessing step. The role of this is to do some final tinkering with
the layout, still in layout coordinates. Specifically, the function rotates the layout for dot (if rankdir is
set), attaches the root graph’s label, if any, and normalizes the drawing so that the lower left corner of its
bounding box is at the origin.

Except for dot, the algorithms also provide a node’s position, in inches, in the array give by ND pos.



Graphviz Library Manual, August 21, 2014 22

3.1 dot

The dot algorithm produces a ranked layout of a graph respecting edge directions if possible. It is particu-
larly appropriate for displaying hierarchies or directed acyclic graphs. The basic layout scheme is attributed
to Sugiyama et al.[STT81] The specific algorithm used by dot follows the steps described by Gansner et
al.[GKNV93]

The steps in the dot layout are:

initialize
rank
mincross
position
sameports
splines
compoundEdges

After initialization, the algorithm assigns each node to a discrete rank (rank) using an integer program
to minimize the sum of the (discrete) edge lengths. The next step (mincross) rearranges nodes within
ranks to reduce edge crossings. This is followed by the assignment (position) of actual coordinates to
the nodes, using another integer program to compact the graph and straighten edges. At this point, all nodes
will have a position set in the coord attribute. In addition, the bounding box bb attribute of all clusters are
set.

The sameports step is an addition to the basic layout. It implements the feature, based on the edge
attributes "samehead" and "sametail", by which certain edges sharing a node all connect to the node
at the same point.

Edge representations are generated in the splines step. At present, dot draws all edges as B-splines,
though some edges will actually be the degenerate case of a line segment.

Although dot supports the notion of cluster subgraphs, its model does not correspond to general com-
pound graphs. In particular, a graph cannot have edges connecting two clusters, or a cluster and a node. The
layout can emulate this feature. Basically, if the head and tail nodes of an edge lie in different, non-nested
clusters, the edge can specify these clusters as a logical head or logical tail using the lhead or ltail
attribute. The spline generated in splines for the edge can then be clipped to the bounding box of the
specified clusters. This is accomplished in the compoundEdges step.

3.2 neato

The layout computed by neato is specified by a virtual physical model, i.e., one in which nodes are treated
as physical objects influenced by forces, some of which arise from the edges in the graph. The layout is
then derived by finding positions of the nodes which minimize the forces or total energy within the system.
The forces need not correspond to true physical forces, and typically the solution represents some local
minimum. Such layouts are sometimes referred to as symmetric, as the principal aesthetics of such layouts
tend to be the visualization of geometric symmetries within the graph. To further enhance the display of
symmetries, such drawings tend to use line segments for edges.

The model used by neato comes from Kamada and Kawai[KK89], though it was first introduced by
Kruskal and Seely[KS80] in a different format. The model assumes there is a spring between every pair of
vertices, each with an ideal length. The ideal lengths are a function of the graph edges. The layout attempts
to minimize the energy in this system.

initialize



Graphviz Library Manual, August 21, 2014 23

position
adjust
splines

As usual, the layout starts with an initialization step. The actual layout is parameterized by the mode
and model attributes. The mode attribute determines how the optimization problem is solved, either by the
default, stress majorization[GKN04] mode, (mode="major"), or the gradient descent technique proposed
by Kamada and Kawai[KK89] (mode="KK"). The latter mode is typically slower than the former, and
introduces the possibility of cycling. It is maintained solely for backward compatibility.

The model indicates how the ideal distances are computed between all pairs of nodes. By default, neato
uses a shortest path model (model="shortpath"), so that the length of the spring between nodes p and
q is the length of the shortest path between them in the graph. Note that the shortest path calculation takes
into account the lengths of edges as specified by the "len" attribute, with one inch being the default.

If mode="KK" and the graph attribute pack is false, neato sets the distance between nodes in separate
connected components to 1.0 + Lavg ·

√
|V|, where Lavg is the average edge length and |V| is the number

of nodes in the graph. This supplies sufficient separation between components so that they do not overlap.
Typically, the larger components will be centrally located, while smaller components will form a ring around
the outside.

In some cases, an application may decide to use the circuit model (model="circuit"), a model
based on electrical circuits as first proposed by Cohen[Coh87]. In this model, the spring length is derived
from resistances using Kirchoff’s law. This means that the more paths between p and q in the graph, the
smaller the spring length. This has the effect of pulling clusters closer together. We note that this approach
only works if the graph is connected. If the graph is not connected, the layout automatically reverts to the
shortest path model.

The third model is the subset model (model="subset"). This sets the length of each edge to be the
number of nodes that are neighbors of exactly one of the end points, and then calculates remaining distances
using shortest paths. This helps to separate nodes with high degree.

The basic algorithm used by neato performs the layout assuming point nodes. Since in many cases, the
final drawing uses text labels and various node shapes, the drawing ends up with many nodes overlapping
each other. For certain uses, the effect is desirable. If not, the application can use the adjust step to
reposition the nodes to eliminate overlaps. This is controlled by the graph attribute "overlap".

With nodes positioned, the algorithm proceeds to draw the edges using its splines function. By
default, edges are drawn as line segments. If, however, the "splines" graph attribute is set to true, the
edges will be constructed as splines[DGKN97], routing them around the nodes. Topologically, the spline
follows the shortest path between two nodes while avoiding all others. Clearly, for this to work, there can be
no node overlaps. If overlaps exist, edge creation reverts back to line segments. When this function returns,
the positions of the nodes will be recorded in their coords attribute, in points.

The programmer should be aware of certain limitations and problems with the neato algorithm. First,
as noted above, if mode="KK", it is possible for the minimization technique used by neato to cycle, never
finishing. At present, there is no way for the library to detect this, though once identified, it can easily be
fixed by simply picking another initial position. Second, although multiedges affect the layout, the spline
router does not yet handle them. Thus, two edges between the same nodes will receive the same spline.
Finally, neato provides no mechanism for drawing clusters. If clusters are required, one should use the fdp
algorithm, which belongs to the same family as neato and is described next.



Graphviz Library Manual, August 21, 2014 24

3.3 fdp

The fdp layout is similar in appearance to neato and also relies on a virtual physical model, this time
proposed by Fruchterman and Reingold[FR91]. This model uses springs only between nodes connected
with an edge, and an electrical repulsive force between all pairs of nodes. Also, it achieves a layout by
minimizing the forces rather than energy of the system.

Unlike neato, fdp supports cluster subgraphs. In addition, it allows edges between clusters and nodes,
and between cluster and clusters. At present, an edge from a cluster cannot connect to a node or cluster with
the cluster.

initialize
position
splines

The layout scheme is fairly simple: initialization; layout; and a call to route the edges. In fdp, because
it is necessary to keep clusters separate, the removal of overlaps is (usually) obligatory.

3.4 sfdp

The sfdp layout is similar to fdp except it uses a refined multilevel approach that enables it to handle very
large graphs. The algorithm is due to Hu[Hu05].

Unlike fdp, sfdp does not support cluster subgraphs. It also does not model edge lengths or weights.

initialize
position
adjust
splines

The layout scheme is fairly simple: initialization; layout; node overlap removal; and a call to route the
edges.

3.5 twopi

The radial layout algorithm represented by twopi is conceptually the simplest in Graphviz. Following an
algorithm described by Wills[Wil97], it takes a node specified as the center of the layout and the root of the
generated spanning tree. The remaining nodes are placed on a series of concentric circles about the center,
the circle used corresponding to the graph-theoretic distance from the node to the center. Thus, for example,
all of the neighbors of the center node are placed on the first circle around the center. The algorithm allocates
angular slices to each branch of the induced spanning tree to guarantee enough space for the tree on each
ring. At present, the algorithm does not attempt to visualize clusters.

initialize
position
adjust
splines

As usual, the layout commences by initializing the graph. This is followed by the position step,
which is parameterized by the central node, specified by the graph’s root attribute. If unspecified, the
algorithm will select some “most central” node, i.e., one whose minimum distance from a leaf node is
maximal.

As with neato, the layout allows an adjust step to eliminate node-node overlaps. Again as with neato,
the call to splines computes drawing information for edges. See Section 3.2 for more details.



Graphviz Library Manual, August 21, 2014 25

3.6 circo

The circo algorithm is based on the work of Six and Tollis[ST99, ST00], as modified by Kaufmann and
Wiese[KW]. The nodes in each biconnected component are placed on a circle, with some attempt to mini-
mize edge crossings. Then, by considering each component as a single node, the derived tree is laid out in
a similar fashion to twopi, with some component considered as the root node.

initialize
position
splines

As with fdp, the scheme is very simple. By construction, the circo layout avoids node overlaps, so no
adjust step is necessary.

4 The Graphviz context

Up to now, we have used a Graphviz context GVC t without considering its purpose. As suggested earlier,
this value is used to store various layout information that is independent of a particular graph and its at-
tributes. It holds the data associated with plugins, parsed-command lines, script engines, and anything else
with a scope potentially larger than one graph, up to the scope of the application. In addition, it maintains
lists of the available layout algorithms and renderers; it also records the most recent layout algorithm applied
to a graph. It can be used to specify multiple renderings of a given graph layout into different associated
files. It is also used to store various global information used during rendering.

There should be just one GVC t created for the entire duration of an application. A single GVC t value
can be used with multiple graphs, though with only one graph at a time. In addition, if gvLayout() was
invoked for a graph and GVC t, then gvFreeLayout() should be called before using gvLayout()
again, even on the same graph.

Normally, one creates a GVC t by a call to:

extern GVC_t *gvContext();

which is what we have used in the examples shown here.
One can initialize a GVC t to record a list of graphs, layout algorithms and renderers. To do this, the

application should call the function gvParseArgs:

extern void gvParseArgs(GVC_t* gvc, int argc, char* argv[]);

This function takes the context value, plus an array of strings using the same conventions as the parameters
to main function in a C program. In particular, argc should be the number of values in argv. If the
base part of argv[0] (argv[0] with the directory portion removed) is the name of one of the layout
algorithms, this will be bound to the GVC t value and used at layout time. (This can always be overridden
by supplying a "-K" flag, or by supplying a "layout" attribute in the graph.) The remaining argv
values, if any, are interpreted exactly like the allowed command line flags for any Graphviz program. Thus,
"-T" can be used to set the output type, and "-o" can be used to specify the output files.

For example, the application can use a synthetic argument list

GVC_t* gvc = gcContext();
char* args[] = {

"dot",
"-Tgif", /* gif output */



Graphviz Library Manual, August 21, 2014 26

"-oabc.gif" /* output to file abc.gif */
};
gvParseArgs (gvc, sizeof(args)/sizeof(char*), args);

to specify a dot layout in GIF output written to the file abc.gif. Another approach is to use a program’s
actual argument list, after removing flags not handled by Graphviz.

Most of the information is stored in a GVC t value for use during rendering. However, if the argv
array contains non-flag arguments, i.e., strings after the first not beginning with "-", these are taken
to be input files defining a stream of graphs to be drawn. These graphs can be accessed by calls to
gvNextInputGraph.

Once the GVC t has been initialized this way, the application can call gvNextInputGraph to get
each input graph in sequence, and then invoke gvLayoutJobs and gvRenderJobs to do the specified
layouts and renderings. See Appendix C for a typical example of this approach.

We note that gvLayout basically attaches the graph and layout algorithm to the GVC t, as would be
done by gvParseArgs, and then invokes gvLayoutJobs. A similar remark holds for gvRender and
gvRenderJobs.

4.1 Version-specific data

When the GVC t is created, it stores version and build date information that can be used by renderers to
identify which version of Graphviz produced the output. It is also what is printed when a layout program is
given the -V flag. This information is stored as an array of three char*, giving the name, version number
and build date, respectively. These can be accessed via the functions:

extern char **gvcInfo(GVC_t*);
extern char *gvcVersion(GVC_t*);
extern char *gvcBuildDate(GVC_t*);

5 Graphics renderers

All graph output done in Graphviz goes through a renderer with the type gvrender engine t, used in
the call to gvRender. In addition to the renderers which are part of the library, an application can provide
its own, allowing it to specialize or control the output as necessary. See Section 6.1 for further details.

As in the layout phase invoked by gvLayout, all control over aspects of rendering are handled via
graph attributes. For example, the attribute outputorder determines whether all edges are drawn before
any nodes, or all nodes are drawn before any edges.

Before describing the renderer functions in detail, it may be helpful to give an overview of how output
is done. Output can be viewed as a hierarchy of document components. At the highest level is the job,
representing an output format and target. Bound to a job might be multiple graphs, each embedded in some
universal space. Each graph may be partitioned into multiple layers as determined by a graph’s layers
attribute, if any. Each layer may be divided into a 2-dimensional array of pages. A page will then contain
nodes, edges, and clusters. Each of these may contain an HTML anchor. During rendering, each component
is reflected in paired calls to its corresponding begin ... and end ... functions. The layer and
anchor components are omitted if there is only a single layer or the enclosing component has no browser
information.

Figure 3 lists the names and type signatures of the fields of gv render engine t, which are used to
emit the components described above.9 All of the functions take a GVJ t* value, which contains various

9Any types mentioned in this section are either described in this section or in Appendix E.



Graphviz Library Manual, August 21, 2014 27

information about the current rendering, such as the output stream, if any, or the device size and resolution.
Section 5.1 describes this data structure.

Most of the functions handle the nested graph structure. All graphics output is handled by the textpara,
ellipse, polygon, beziercurve, and polyline functions. The relevant drawing information such
as color and pen style is available through the obj field of the GVJ t* parameter. This is described in Sec-
tion 5.2. Font information is passed with the text.

We note that, in Graphviz, each node, edge or cluster in a graph has a unique id field, which can be
used as a key for storing and accessing the object.

void (*begin job) (GVJ t*);
void (*end job) (GVJ t*);
void (*begin graph) (GVJ t*);
void (*end graph) (GVJ t*);
void (*begin layer) (GVJ t*, char*, int, int);
void (*end layer) (GVJ t*);
void (*begin page) (GVJ t*);
void (*end page) (GVJ t*);
void (*begin cluster) (GVJ t*, char*, long);
void (*end cluster) (GVJ t*);
void (*begin nodes) (GVJ t*);
void (*end nodes) (GVJ t*);
void (*begin edges) (GVJ t*);
void (*end edges) (GVJ t*);
void (*begin node) (GVJ t*, char*, long);
void (*end node) (GVJ t*);
void (*begin edge) (GVJ t*, char*, bool, char*, long);
void (*end edge) (GVJ t*);
void (*begin anchor) (GVJ t*, char*, char*, char*);
void (*end anchor) (GVJ t*);
void (*textpara) (GVJ t*, pointf, textpara t*);
void (*resolve color) (GVJ t*, gvcolor t*);
void (*ellipse) (GVJ t*, pointf*, int);
void (*polygon) (GVJ t*, pointf*, int, int);
void (*beziercurve) (GVJ t*, pointf*, int, int, int, int);
void (*polyline) (GVJ t*, pointf*, int);
void (*comment) (GVJ t*, char*);

Figure 3: Interface for a renderer

In the following, we describe the functions in more detail, though many are self-explanatory. All posi-
tions and sizes are in points.

begin job(job) Called at the beginning of all graphics output for a graph, which may entail drawing
multiple layers and multiple pages.

end job(job) Called at the end of all graphics output for graph. The output stream is still open, so the
renderer can append any final information to the output.

begin graph(job) Called at the beginning of drawing a graph. The actual graph is available as
job->obj->u.g.



Graphviz Library Manual, August 21, 2014 28

end graph(job) Called when the drawing of a graph is complete.

begin layer(job,layerName,n,nLayers) Called at the beginning of each layer, only if nLayers >
0. The layerName parameter is the logical layer name given in the layers attribute. The layer
has index n out of nLayers, starting from 0.

end layer(job) Called at the end of drawing the current layer.

begin page(job) Called at the beginning of a new output page. A page will contain a rectangular
portion of the drawing of the graph. The value job->pageOffset gives the lower left corner of
the rectangle in layout coordinates. The point job->pagesArrayElem is the index of the page in
the array of pages, with the page in the lower left corner indexed by (0,0). The value job->zoom
provides a scale factor by which the drawing should be scaled. The value job->rotation, if
non-zero, indicates that the output should be rotated by 90◦ counterclockwise.

end page(job) Called when the drawing of a current page is complete.

begin cluster(job) Called at the beginning of drawing a cluster subgraph. The actual cluster is
available as job->obj->u.sg.

end cluster(job) Called at the end of drawing the current cluster subgraph.

begin nodes(job) Called at the beginning of drawing the nodes on the current page. Only called if
the graph attribute outputorder was set to a non-default value.

end nodes(job) Called when all nodes on a page have been drawn. Only called if the graph attribute
outputorder was set to a non-default value.

begin edges(job) Called at the beginning of drawing the edges on the current page. Only called if
the graph attribute outputorder was set to a non-default value.

end edges() Called when all edges on the current page are drawn. Only called if the graph attribute
outputorder was set to a non-default value.

begin node(job) Called at the start of drawing a node. The actual node is available as job->obj->u.n.

end node(job) Called at the end of drawing the current node.

begin edge(job) Called at the start of drawing an edge. The actual edge is available as job->obj->u.e.

end edge(job) Called at the end of drawing the current edge.

begin anchor(job,href,tooltip,target) Called at the start of an anchor context associated
with the current node, edge, or graph, or its label, assuming the graph object or its label has a URL or
href attribute. The href parameter gives the associated href, while tooltip and target supply
any tooltip or target information. If the object has no tooltip, its label will be used. If the object has
no target attribute, this parameter will be NULL.

If the anchor information is attached to a graph object, the begin anchor and end anchor calls
enclose the begin ... and end ... calls on the object. If the anchor information is attached to
part of an object’s label, the begin anchor and end anchor calls enclose the rendering of that
part of the label plus any subparts.

end anchor(job) Called at the end of the current anchor context.



Graphviz Library Manual, August 21, 2014 29

textpara(job, p, txt) Draw text at point p using the specified font and fontsize and color. The
txt argument provides the text string txt->str, stored in UTF-8, a calculated width of the string
txt->width and the horizontal alignment txt->just of the string in relation to p. The values
txt->fontname and txt->fontname give the desired font name and font size, the latter in
points.

The base line of the text is given by p.y. The interpretation of p.x depends upon the value of
txt->just. Basically, p.x provides the anchor point for the alignment.

txt->just p.x
’n’ Center of text
’l’ Left edge of text
’r’ Right edge of text

The leftmost x coordinate of the text, the parameter most graphics systems use for text placement, is
given by p.x + j * txt->width, where j is 0.0 (-0.5,-1.0) if txt->just is ’l’(’n’,’r’),
respectively. This representation allows the renderer to accurately compute the point for text place-
ment that is appropriate for its format, as well as use its own mechanism for computing the width of
the string.

resolve color(job, color) Resolve a color. The color parameter points to a color representa-
tion of some particular type. The renderer can use this information to resolve the color to a represen-
tation appropriate for it. See Section 5.3 for more details.

ellipse(job, ps, filled) Draw an ellipse with center at ps[0], with horizontal and vertical
half-axes ps[1].x - ps[0].x and ps[1].y - ps[0].y using the current pen color and line
style. If filled is non-zero, the ellipse should be filled with the current fill color.

polygon(job, A, n, filled) Draw a polygon with the n vertices given in the array A, using the
current pen color and line style. If filled is non-zero, the polygon should be filled with the current
fill color.

beziercurve(job, A, n, arrow at start, arrow at end, filled) Draw a B-spline with
the n control points given in A. This will consist of (n− 1)/3 cubic Bezier curves. The spline should
be drawn using the current pen color and line style. If the renderer has specified that it does not want
to do its own arrowheads (cf. Section 6.1), the parameters arrow at start and arrow at end
will both be 0. Otherwise, if arrow at start (arrow at end) is true, the function should draw
an arrowhead at the first (last) point of A. If filled is non-zero, the bezier should be filled with the
current fill color.

polyline(job,A,n) Draw a polyline with the n vertices given in the array A, using the current pen
color and line style.

comment(job, text) Emit text comments related to a graph object. For nodes, calls will pass the
node’s name and any comment attribute attached to the node. For edges, calls will pass a string
description of the edge and any comment attribute attached to the edge. For graphs and clusters, a
call will pass a any comment attribute attached to the object.

Although access to the graph object being drawn is available through the GVJ t value, a renderer can
often perform its role by just implementing the basic graphics operations. It need have no information about
graphs or the related Graphviz data structures. Indeed, a particular renderer need not define any particular
rendering function, since a given entry point will only be called if non-NULL.



Graphviz Library Manual, August 21, 2014 30

5.1 The GVJ t data structure

We now describe some of the more important fields in the GVJ t structure, concentrating on those regarding
output. There are additional fields relevant to input and GUIs.

common This points to various information valid throughout the duration of the application using Graphviz.
In particular, the common->info contains Graphviz version information, as described in Sec-
tion 4.1.

output file The FILE* value for an open stream on which the output should be written, if relevant.

pagesArraySize The size of the array of pages in which the graph will be output, given as a point.
If pagesArraySize.x or pagesArraySize.y is greater than one, this indicates that a page
size was set and the graph drawing is too large to be printed on a single page. Page (0,0) is the page
containing the bottom, lefthand corner of the graph drawing; page (1,0) will contain that part of the
graph drawing to the right of page (0,0); etc.

bb The bounding box of the layout in the universal space in points. It has type boxf.

boundingBox The bounding box of the layout in the device space in device coordinates. It has type box.

layerNum The current layer number.

numLayers The total number of layers.

pagesArrayElem The row and column of the current page.

pageOffset The origin of the current page in the universal space in points.

zoom Factor by which the output should be scaled.

rotation Indicates whether or not the rendering should be rotated.

obj Information related to the current object being rendered. This is a pointer of a value of type obj state t.
See Section 5.2 for more details.

5.2 Inside the obj state t data structure

A value of type obj state t encapsulates various information pertaining to the current object being
rendered. In particular, it provides access to the current object, and provides the style information for any
rendering operation. Figure 4 notes some of the more useful fields in the structure.

type and u The type field indicates what kind of graph object is currently being rendered. The possible
values are ROOTGRAPH OBJTYPE, CLUSTER OBJTYPE, NODE OBJTYPE and EDGE OBJTYPE,
indicating the root graph, a cluster subgraph, a node and an edge, respectively. A pointer to the actual
object is available via the subfields u.g, u.sg, u.n and u.e, respectively, of the union u.

pencolor The gvcolor t value indicating the color used to draw lines, curves and text.

pen The style of pen to be used. The possible values are PEN NONE, PEN DOTTED, PEN DASHED and
PEN SOLID.

penwidth The size of the pen, in points. Note that, by convention, a value of 0 indicates using the smallest
width supported by the output format.



Graphviz Library Manual, August 21, 2014 31

obj type type;
union {

graph t *g;
graph t *sg;
node t *n;
edge t *e;

} u;
gvcolor t pencolor;
gvcolor t fillcolor;
pen type pen;
double penwidth;
char *url;
char *tailurl;
char *headurl;
char *tooltip;
char *tailtooltip;
char *headtooltip;
char *target;
char *tailtarget;
char *headtarget;

Figure 4: Some fields in obj state t

fillcolor The gvcolor t value indicating the color used to fill closed regions.

Note that font information is delivered as part of the textpara t value passed to the textpara function.
As for the url, tooltip and target fields, these will point to the associated attribute value of the current

graph object, assuming it is defined and that the renderer support map, tooltips, and targets, respectively (cf.
Section 6.1).

5.3 Color information

There are five ways in which a color can be specified in Graphviz: RGB + alpha, HSV + alpha, CYMK,
color index, and color name. In addition, the RGB + alpha values can be stored as bytes, words or doubles.

A color value in Graphviz has the type gvcolor t, containing two fields: a union u, containing the
color data, and the type field, indicating which color representation is used in the union. Table 14 describes
the allowed color types, and the associated union field.

Before a color is used in rendering, Graphviz will process a color description provided by the input
graph into a form desired by the renderer. This is three step procedure. First, Graphviz will see if the
color matches the renderer’s known colors, if any. If so, the color representation is COLOR STRING.
Otherwise, the library will convert the input color description into the renderer’s preferred format. Finally,
if the renderer also provides a resolve color function, Graphviz will then call that function, passing a
pointer to the current color value. The renderer then has the opportunity to adjust the value, or convert it into
another format. In a typical case, if a renderer uses a color map, it may request RGB values as input, and
then store an associated color map index using the COLOR INDEX format. If the renderer does a conversion
to another color type, it must reset the type field to indicate this. It is this last representation which will
be passed to the renderer’s drawing routines. The renderer’s known colors and preferred color format are
described in Section 6.1 below.



Graphviz Library Manual, August 21, 2014 32

Type Description Field
RGBA BYTE RGB + alpha format represented as 4 bytes from 0 to 255 u.rgba
RGBA WORD RGB + alpha format represented as 4 words from 0 to

65535
u.rrggbbaa

RGBA DOUBLE RGB + alpha format represented as 4 doubles from 0 to 1 u.RGBA
HSVA DOUBLE HSV + alpha format represented as 4 doubles from 0 to 1 u.HSVA
CYMK BYTE CYMK format represented as 4 bytes from 0 to 255 u.cymk
COLOR STRING text name u.string
COLOR INDEX integer index u.index

Table 14: Color type representations

6 Adding Plug-ins

The Graphviz framework allows the programmer to use plug-ins to extend the system in several ways.
For example, the programmer can add new graph layout engines along with new renderers and their re-
lated functions. Table 15 describes the plug-in APIs supported by Graphviz. Each plug-in is defined

Kind Functions Features Description
API render gvrender engine t gvrender features t Functions for rendering a graph
API device gvdevice engine t - Functions for initializing and terminat-

ing a device
API loadimage gvloadimage engine t - Functions for converting from one im-

age format to another
API layout gvlayout engine t gvlayout features t Functions for laying out a graph
API textlayout gvtextlayout engine t - Functions for resolving font names and

text size

Table 15: Plug-in API types

by an engine structure containing its function entry points, and a features structure specifying features
supported by the plug-in. Thus, a renderer is defined by values of type gvrender engine t and
gvrender features t.

Once all of the plug-ins of a given kind are defined, they should be gathered into a 0-terminated array
of element type gvplugin installed t, whose fields are shown in Figure 5. The fields have the

int id;
char *type;
int quality;
void *engine;
void *features;

Figure 5: Plug-in fields

following meanings.

id Identifier for a given plug-in within a given package and with a given API kind. Note that the id need
only be unique within its plug-in package, as these packages are assumed to be independent.

type Name for a given plug-in, used during plug-in lookup.

quality An arbitrary integer used for ordering plug-ins with the same type. Plug-ins with larger values
will be chosen before plug-ins with smaller values.



Graphviz Library Manual, August 21, 2014 33

engine Points to the related engine structure.

features Points to the related features structure.

As an example, suppose we wish to add various renderers for bitmap output. A collection of these might
be combined as follows.

gvplugin_installed_t render_bitmap_types[] = {
{0, "jpg", 1, &jpg_engine, &jpg_features},
{0, "jpeg", 1, &jpg_engine, &jpg_features},
{1, "png", 1, &png_engine, &png_features},
{2, "gif", 1, &gif_engine, &gif_features},
{0, NULL, 0, NULL, NULL}

};

Note that this allows "jpg" and "jpeg" to refer to the same renderers. For the plug-in kinds without a
features structure, the feature pointer in its gvplugin installed t should be NULL.

All of the plug-ins of all API kinds should then be gathered into a 0-terminated array of element type
gvplugin api t. For each element, the first field indicates the kind of API, and the second points to the
array of plug-ins described above (gvplugin installed t).

Continuing our example, if we have supplied, in addition to the bitmap rendering plug-ins, plug-ins to
render VRML, and plug-ins to load images, we would define

gvplugin_api_t apis[] = {
{API_render, &render_bitmap_types},
{API_render, &render_vrml_types},
{API_loadimage, &loadimage_bitmap_types},
{0, 0},

};

Here render vrml types and render vrml types are also 0-terminated arrays of element type
gvplugin installed t. Note that there can be multiple items of the same API kind.

A final definition is used to attach a name to the package of all the plug-ins. This is done using a
gvplugin library t structure. Its first field is a char* giving the name of the package. The second
field is a gvplugin api t* pointing to the array described above. The structure itself must be named
gvplugin name LTX library, where name is the name of the package as defined in the first field.

For example, if we have decided to call our package "bitmap", we could use the following definition:

gvplugin_library_t gvplugin_bitmap_LTX_library = { "bitmap", apis };

To finish the installation of the package, it is necessary to create a dynamic library containing the
gvplugin library t value and all of the functions and data referred by it, either directly or indi-
rectly. The library must be named gvplugin name, where again name is the name of the package.
The actual filename of the library will be system-dependent. For example, on Linux systems, our library
gvplugin bitmap would have filename libgvplugin bitmap.so.3.

In most cases, Graphviz is built with a plug-in version number. This number must be included in
the library’s filename, following any system-dependent conventions. The number is given as the value of
plugins in the file libgvc.pc, which can be found in the directory lib/pkgconfigwhere Graphviz
was installed. In our example, the “3” in the library’s filename gives the version number.



Graphviz Library Manual, August 21, 2014 34

Finally, the library must be installed in the Graphviz library directory, and dot -c must be run to
add the package to the Graphviz configuration. Note that both of these steps typically assume that one has
installer privileges.10

In the remainder of this section, we shall look at the first three types of plug-in APIs in more detail.

6.1 Writing a renderer plug-in

A renderer plug-in has two parts. The first consists of a structure of type gvrender engine t defining
the renderer’s actions, as described in Section 5. Recall that any field may contain a NULL pointer.

For the second part, the programmer must provide a structure of type gvrender features t. This
record provides Graphviz with information about the renderer. Figure 6 list the fields involved. Some of the

int flags;
double default margin;
double default pad;
pointf default pagesize;
pointf default dpi;
char **knowncolors;
int sz knowncolors;
color type t color type;
char *device;
char *loadimage target;

Figure 6: Features of a renderer

default values may be overridden by the input graph.
We now describe the fields in detail.

flags Bit-wise of or flags indicating properties of the renderer. These flags are described in Table 16.

default margin Default margin size in points. This is the amount of space left around the drawing.

default pad Default pad size in points. This is the amount by which the graph is inset within the
drawing region. Note that the drawing region may be filled with a background color.

default pagesize Default page size size in points. For example, an 8.5 by 11 inch letter-sized page
would have a default pagesize of 612 by 792.

default dpi Default resolution, in pixels per inch. Note that the x and y values may be different to
support non-square pixels.

knowncolors An array of character pointers giving a lexicographically ordered 11 list of the color names
supported by the renderer.

sz knowncolors The number of items in the knowncolors array.

color type The preferred representation for colors. See Section 5.3.
10Normally, for builds intended for local installation dot -c is run during make install. It may be necessary to run this

manually if cross-compiling or otherwise manually moving binaries to a different system.
11The ordering must be done byte-wise using the LANG=C locale for byte comparison.



Graphviz Library Manual, August 21, 2014 35

device The name of a device, if any, associated with the renderer. For example, a renderer using GTK
for output might specify "gtk" as its device. If a name is given, the library will look for a plug-in
of type API device with that name, and use the associated functions to initialize and terminate the
device. See Section 6.2.

loadimage target The name of the preferred type of image format for the renderer. When a user-
supplied image is given, the library will attempt to find a function that will convert the image from
its original format to the renderer’s preferred one. A user-defined renderer may need to provide, as
additional plug-ins, its own functions for handling the conversion.

Flag Description
GVRENDER DOES ARROWS Built-in arrowheads on splines
GVRENDER DOES LAYERS Supports graph layers
GVRENDER DOES MULTIGRAPH OUTPUT FILES If true, the renderer’s output can contain multiple renderings
GVRENDER DOES TRUECOLOR Supports a truecolor color model
GVRENDER Y GOES DOWN Output coordinate system has the origin in the upper left corner
GVRENDER X11 EVENTS For GUI plug-ins, defers actual rendering until the GUI event loop

invokes job->callbacks->refresh()
GVRENDER DOES TRANSFORM Can handle transformation (scaling, translation, rotation) from univer-

sal to device coordinates. If false, the library will do the transformation
before passing any coordinates to the renderer

GVRENDER DOES LABELS Wants an object’s label, if any, provided as text during rendering
GVRENDER DOES MAPS Supports regions to which URLs can be attached. If true, URLs are

provided to the renderer, either as part of the job->obj or via the
renderer’s begin anchor function

GVRENDER DOES MAP RECTANGLE Rectangular regions can be mapped
GVRENDER DOES MAP CIRCLE Circular regions can be mapped
GVRENDER DOES MAP POLYGON Polygons can be mapped
GVRENDER DOES MAP ELLIPSE Ellipses can be mapped
GVRENDER DOES MAP BSPLINE B-splines can be mapped
GVRENDER DOES TOOLTIPS If true, tooltips are provided to the renderer, either as part of the

job->obj or via the renderer’s begin anchor function
GVRENDER DOES TARGETS If true, targets are provided to the renderer, either as part of the

job->obj or via the renderer’s begin anchor function
GVRENDER DOES Z Uses a 3D output model

Table 16: Renderer properties

6.2 Writing a device plug-in

A device plug-in provides hooks for Graphviz to handle any device-specific operations needed before and
after rendering. The related engine of type gvdevice engine t has 2 entry points:

void (*initialize) (GVJ_t*);
void (*finalize) (GVJ_t*);

which are called at the beginning and end of rendering each job. The initialize routine might open a canvas
on window system, or set up a new page for printing; the finalize routine might go into an event loop after
which it could close the output device.

6.3 Writing an image loading plug-in

A image loading plug-in has engine type gvimageload engine t and provides a single entry point
which can be used to read in an image, convert the image from one format to another, and write the result.



Graphviz Library Manual, August 21, 2014 36

Since the function actually does rendering, it is usually closely tied to a specific renderer plug-in.

void (*loadimage) (GVJ_t *job, usershape_t *us, boxf b, bool filled);

When called, loadimage is given the current job, a pointer to the input image us, and the bounding box
b in device coordinates where the image should be written. The boolean filled value indicates whether
the bounding box should first be filled.

The type value for an image loading plug-in’s gvplugin installed t entry should specify the
input and output formats it handles. Thus, a plug-in converting JPEG to GIF would be called "jpeg2gif".
Since an image loader may well want to read in an image in some format, and then render the image using
the same format, it is quite reasonable for the input and output formats to be identical, e.g. "gif2gif".

Concerning the type usershape t, its most important fields are shown in Figure 7. These fields have

char *name;
FILE *f;
imagetype t type;
unsigned int x, y;
unsigned int w, h;
unsigned int dpi;
void *data;
size t datasize;
void (*datafree)(usershape t *us);

Figure 7: Fields in usershape t

the following meanings:

name The name of the image.

f An open input stream to the image’s data. Since the image might be processed multiple times, the
application should use a function such as fseek to make sure the file pointer points to the beginning
of the file.

type The format of the image. The formats supported in Graphviz are FT BMP, FT GIF, FT PNG,
FT JPEG, FT PDF, FT PS and FT EPS. The value FT NULL indicates an unknown image type.

x and y The coordinates of the lower-left corner of image in image units. This is usually the origin but
some images such as those in PostScript format may be translated away from the origin.

w and h The width and height of image in image units

dpi The number of image units per inch

data, datasize, datafree These fields can be used to cache the converted image data so that the file
I/O and conversion need only be done once. The data can be stored via data, with datasize
giving the number of bytes used. In this case, the image loading code should store a clean-up handler
in datafree, which can be called to release any memory allocated.

If loadimage does caching, it can check if us->data is NULL. If so, it can read and cache the
image. If not, it should check that the us->datafree value points to its own datafree routing.
If not, then some other image loader has cached data there. The loadimage function must them
call the current us->datafree function before caching its own version of the image.

The code template in Figure 8 indicates how caching should be handled.



Graphviz Library Manual, August 21, 2014 37

if (us->data) {
if (us->datafree != my_datafree) {

us->datafree(us); /* free incompatible cache data */
us->data = NULL;
us->datafree = NULL;
us->datasize = 0;

}
}

if (!us->data) {
/* read image data from us->f and convert it;

* store the image data into memory pointed to by us->data;

* set us->datasize and us->datafree to the appropriate values.

*/
}

if (us->data) {
/* emit the image data in us->data */

}

Figure 8: Caching converted images

7 Unconnected graphs

All of the basic layouts provided by Graphviz are based on a connected graph. Each is then extended to
handle the not uncommon case of having multiple components. Most of the time, the obvious approach is
used: draw each component separately and then assemble the drawings into a single layout. The only place
this is not done is in neato when the mode is "KK" and pack="false" (cf. Section 3.2).

For the dot algorithm, its layered drawings make the merging simple: the nodes on the highest rank
of each component are all put on the same rank. For the other layouts, it is not obvious how to put the
components together.

The Graphviz software provides the library pack to assist with unconnected graphs, especially by
supplying a technique for packing arbitrary graph drawings together quickly, aesthetically and with efficient
use of space. The following code indicates how the library can be integrated with the basic layout algorithms
given an input graph g and a GVC t value gvc.

Agraph_t *sg;
FILE *fp;
Agraph_t** cc;
int i, ncc;

cc = ccomps(g, &ncc, (char*)0);

for (i = 0; i < ncc; i++) {
sg = cc[i];

nodeInduce (sg);
gvLayout(gvc, sg, "neato");



Graphviz Library Manual, August 21, 2014 38

}
pack_graph (ncc, cc, g, 0);

gvRender(gvc, g, "ps", stdout);

for (i = 0; i < ncc; i++) {
sg = cc[i];
gvFreeLayout(gvc, sg);
agdelete(g, sg);

}

The call to ccomps splits the graph g into its connected components. ncc is set to the number of
components. The components are represented by subgraphs of the input graph, and are stored in the returned
array. The function gives names to the components in a way that should not conflict with previously existing
subgraphs. If desired, the third argument to ccomps can be used to designate what the subgraphs should
be called. Also, for flexibility, the subgraph components do not contain the associated edges.

Certain layout algorithms, such as neato, allow the input graph to fix the position of certain nodes,
indicated by ND pinned(n) being non-zero. In this case, all nodes with a fixed position need to be laid
out together, so they should all occur in the same “connected” component. The pack library provides
pccomps, an analogue to ccomps for this situation. It has almost the same interface as ccomps, but
takes a boolean* third parameter. The function sets the boolean pointed to to true if the graph has nodes
with fixed positions. In this case, the component containing these nodes is the first one in the returned array.

Continuing with the example, we take one component at a time, use nodeInduce to create the corre-
sponding node-induced subgraph, and then lay out the component with gvLayout. Here, we use neato for
each layout, but it is possible to use a different layout for each component.12

Next, we use the pack function pack graph to reassemble the graph into a single drawing. To
position the components, pack uses the polyomino-based approach described by Freivalds et al[FDK02].
The first three arguments to the function are clear. The fourth argument indicates whether or not there are
fixed components.

The pack graph function uses the graph’s packmode attribute to determine how the packing should
be done. At present, packing uses the single algorithm mentioned above, but allows three varying granular-
ities, represented by the values "node", "clust" and "graph". In the first case, packing is done at the
node and edge level. This provides the tightest packing, using the least area, but also allows a node of one
component to lie between two nodes of another component. The second value, "clust", requires that the
packing treat top-level clusters with a set bounding box GD bb value like a large node. Nodes and edges
not entirely contained within a cluster are handled as in the previous case. This prevents any components
which do not belong to the cluster from intruding within the cluster’s bounding box. The last case does the
packing at the graph granularity. Each component is treated as one large node, whose size is determined by
its bounding box.

Note that the library automatically computes the bounding box of each of the components. Also, as
a side-effect, pack graph finishes by recomputing and setting the bounding box attribute GD bb of the
graph.

The final step is to free the component subgraphs.
Although dot and neato have their specialized approaches to unconnected graphs, it should be noted that

these are not without their deficiencies. The approach used by dot, aligning the drawings of all components
along the top, works well until the number of components grows large. When this happens, the aspect ratio

12At present, the dot layout has a limitation that it only works on a root graph. Thus, to use dot for a component, one needs to
create a new copy of the subgraph, apply dot and then copy the position attributes back to the component.



Graphviz Library Manual, August 21, 2014 39

of the final drawing can become very bad. neato’s handling of an unconnected graph can have two draw-
backs. First, there can be a great deal of wasted space. The value chosen to separate components is a simple
function of the number of nodes. With a certain edge structure, component drawings may use much less
area. This can produce a drawing similar to a classic atom: a large nucleus surrounded by a ring of electrons
with a great deal of empty space between them. Second, the neato model is essentially quadratic. If the
components are drawn separately, one can see a dramatic decrease in layout time, sometimes several orders
of magnitudes. For these reasons, it sometimes makes sense to apply the twopi approach for unconnected
graphs to the dot and neato layouts. In fact, as we’ve noted, neato layout typically uses the pack
library by default.



Graphviz Library Manual, August 21, 2014 40

References

[BHvW00] M. Bruls, K. Huizing, and J. van Wijk. Squarified Treemaps. In W. de Leeuw and R. van Liere,
editors, Proceedings of Eurographics and IEEE TVCG Symposium on Visualization, pages 33–
42, 2000.

[Coh87] J. Cohen. Drawing graphs to convey proximity: an incremental arrangement meth od. ACM
Transactions on Computer-Human Interaction, 4(11):197–229, 1987.

[DGKN97] D. Dobkin, E. Gansner, E. Koutsofios, and S. North. Implementing a general-purpose edge
router. In G. DiBattista, editor, Proc. Symp. Graph Drawing GD’97, volume 1353 of Lecture
Notes in Computer Science, pages 262–271, 1997.

[FDK02] K. Freivalds, U. Dogrusoz, and P. Kikusts. Disconnected graph layout and the polyomino
packing approach. In P. Mutzel et al., editor, Proc. Symp. Graph Drawing GD’01, volume
2265 of Lecture Notes in Computer Science, pages 378–391, 2002.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-directed Place-
ment. Software – Practice and Experience, 21(11):1129–1164, November 1991.

[GKN04] E. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. In Proc. Symp.
Graph Drawing GD’04, September 2004.

[GKNV93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo. A Tech-
nique for Drawing Directed Graphs. IEEE Trans. Software Engineering, 19(3):214–230, May
1993.

[GN00] E.R. Gansner and S.C. North. An open graph visualization system and its applications to
software engineering. Software – Practice and Experience, 30:1203–1233, 2000.

[Him] Michael Himsolt. GML: A portable Graph File Format. Technical report, Universitat Passau.

[Hu05] Y. F. Hu. Efficient and high quality force-directed graph drawing. Mathematica Journal,
10:37–71, 2005.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1):7–15, April 1989.

[KN94] Eleftherios Koutsofios and Steve North. Applications of Graph Visualization. In Proceedings
of Graphics Interface, pages 235–245, May 1994.

[KS80] J. Kruskal and J. Seery. Designing network diagrams. In Proc. First General Conf. on Social
Graphics, pages 22–50, 1980.

[KW] M. Kaufmann and R. Wiese. Maintaining the mental map for circular drawings. In
M. Goodrich, editor, Proc. Symp. Graph Drawing GD’02, volume 2528 of Lecture Notes in
Computer Science, pages 12–22.

[LBM97] W. Lee, N. Barghouti, and J. Mocenigo. Grappa: A graph package in Java. In G. DiBattista, ed-
itor, Proc. Symp. Graph Drawing GD’97, volume 1353 of Lecture Notes in Computer Science,
1997.

[ST99] Janet Six and Ioannis Tollis. Circular drawings of biconnected graphs. In Proc. ALENEX 99,
pages 57–73, 1999.



Graphviz Library Manual, August 21, 2014 41

[ST00] Janet Six and Ioannis Tollis. A framework for circular drawings of networks. In Proc. Symp.
Graph Drawing GD’99, volume 1731 of Lecture Notes in Computer Science, pages 107–116.
Springer-Verlag, 2000.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of Hierarchical Sys-
tem Structures. IEEE Trans. Systems, Man and Cybernetics, SMC-11(2):109–125, February
1981.

[Wil97] G. Wills. Nicheworks - interactive visualization of very large graphs. In G. DiBattista, editor,
Symposium on Graph Drawing GD’97, volume 1353 of Lecture Notes in Computer Science,
pages 403–414, 1997.

[Win02] A. Winter. Gxl - overview and current status. In Procs. International Workshop on Graph-
Based Tools (GraBaTs), October 2002.



Graphviz Library Manual, August 21, 2014 42

A Compiling and linking

This appendix provides a brief description of how to build your program using Graphviz as a library. It also
notes the various libraries involved. As compilation systems vary greatly, we make no attempt to provide
low-level build instructions. We assume that the user is capable of tailoring the build environment to use the
necessary include files and libraries.

All of the necessary include files and libraries are available in the include, lib and bin directories
where Graphviz is installed. At the simplest level, all an application needs to do to use the layout algorithms
is to include gvc.h, which provides (indirectly) all of the Graphviz types and functions, compile the code,
and link the program with the necessary libraries.

For linking, the application should use the Graphviz libraries

• gvc

• cgraph

• cdt

If the system is configured to use plug-ins, these libraries are all that are necessary. At run time, the program
will load the dynamic libraries it needs.

If the program does not use plug-ins, then these libraries need to be incorporated at link time. These
libraries may include

• gvplugin core

• gvplugin dot layout

• gvplugin neato layout

• gvplugin gd

• gvplugin pango13

plus any other plug-ins the program requires.
If Graphviz is built and installed with the GNU build tools, there are package configure files created

in the lib/pkgconfig directory which can be used with the pkg-config program to obtain the in-
clude file and library information for a given installation. Assuming a Unix-like environment, a sample
Makefile for building the programs listed in Appendices B, C and D14 could have the form:

CFLAGS=‘pkg-config libgvc --cflags‘ -Wall -g -O2
LDFLAGS=‘pkg-config libgvc --libs‘

all: simple dot demo

simple: simple.o
dot: dot.o
demo: demo.o

clean:
rm -rf simple dot demo *.o

13For completeness, we note that it may be necessary to explicitly link in the following additional libraries, depending on the
options set when Graphviz was built: expat, fontconfig, freetype2, pangocairo, cairo, pango, gd, jpeg, png, z,
ltdl, and other libraries required by Cairo and Pango. Typically, though, most builds handle these implicitly.

14They can also be found, along with the Makefile, in the dot.demo directory of the Graphviz source.



Graphviz Library Manual, August 21, 2014 43

B A sample program: simple.c

This following code illustrates an application which uses Graphviz to position a graph using the dot layout
and then writes the output using the plain format. An application can replace the call to gvRender with
its own function for rendering the graph, using the layout information encoded in the graph structure (cf.
Section 2.3).

#include <gvc.h>

int main(int argc, char **argv)
{

GVC_t *gvc;
Agraph_t *g;
FILE *fp;

gvc = gvContext();

if (argc > 1)
fp = fopen(argv[1], "r");

else
fp = stdin;

g = agread(fp, 0);

gvLayout(gvc, g, "dot");

gvRender(gvc, g, "plain", stdout);

gvFreeLayout(gvc, g);

agclose(g);

return (gvFreeContext(gvc));
}



Graphviz Library Manual, August 21, 2014 44

C A sample program: dot.c

This example shows how an application might read a stream of input graphs, lay out each, and then use the
Graphviz renderers to write the drawings to an output file. Indeed, this is precisely how the dot program is
written, ignoring some signal handling, its specific declaration of the Info data (cf. Section 4.1), and a few
other minor details.

#include <gvc.h>

int main(int argc, char **argv)
{

Agraph_t *g, *prev = NULL;
GVC_t *gvc;

gvc = gvContext();
gvParseArgs(gvc, argc, argv);

while ((g = gvNextInputGraph(gvc))) {
if (prev) {

gvFreeLayout(gvc, prev);
agclose(prev);

}
gvLayoutJobs(gvc, g);
gvRenderJobs(gvc, g);
prev = g;

}
return (gvFreeContext(gvc));

}



Graphviz Library Manual, August 21, 2014 45

D A sample program: demo.c

This example provides a modification of the previous example. Again it relies on the Graphviz renderers,
but now it creates the graph dynamically rather than reading the graph from a file.

Note that either the graph or the argv[] values have to specify which layout algorithm is used, as
explained in Section 4. Specifically, the input graph must have the layout attribute set, or the command
line arguments must contain a valid "-K" flag. If not, gvParseArgs will look at the base name part of
argv[0] and use that as the name of desired layout program. For this to work, the executable program
needs to be renamed as one of the Graphviz layout programs (cf. Section 1).

#include <gvc.h>

int main(int argc, char **argv)
{

Agraph_t *g;
Agnode_t *n, *m;
Agedge_t *e;
Agsym_t *a;
GVC_t *gvc;

/* set up a graphviz context */
gvc = gvContext();

/* parse command line args - minimally argv[0] sets layout engine */
gvParseArgs(gvc, argc, argv);

/* Create a simple digraph */
g = agopen("g", Agdirected);
n = agnode(g, "n", 1);
m = agnode(g, "m", 1);
e = agedge(g, n, m, 0, 1);

/* Set an attribute - in this case one that affects the visible rendering */
agsafeset(n, "color", "red", "");

/* Compute a layout using layout engine from command line args */
gvLayoutJobs(gvc, g);

/* Write the graph according to -T and -o options */
gvRenderJobs(gvc, g);

/* Free layout data */
gvFreeLayout(gvc, g);

/* Free graph structures */
agclose(g);

/* close output file, free context, and return number of errors */



Graphviz Library Manual, August 21, 2014 46

return (gvFreeContext(gvc));
}

E Some basic types and their string representations

A point type is the structure

struct {
int x, y;

}

The fields can either give an absolute position or represent a vector displacement. A pointf type is the
same, with int replaced with double. A box type is the structure

struct {
point LL, UR;

}

representing a rectangle. The LL gives the coordinates of the lower-left corner, while the UR is the upper-
right corner. A boxf type is the same, with point replaced with pointf.

The following gives the accepted string representations corresponding to values of the given types.
Whitespace is ignored when converting these values from strings to their internal representations.

point "x,y" where (x,y) are the integer coordinates of a position in points (72 points = 1 inch).

pointf "x,y" where (x,y) are the floating-point coordinates of a position in inches.

rectangle "llx,lly,urx,ury" where (llx,lly) is the lower left corner of the rectangle and
(urx,ury) is the upper right corner, all in integer points.

splineType A semicolon-separated list of spline values.

spline This type has an optional end point, an optional start point, and a space-separated list of N =
3n + 1 points for some positive integer n. An end point consists of a point preceded by "e,"; a
start point consists of a point preceded by "s,". The optional components are separated by spaces.

The terminating list of points p1, p2, . . . , pN gives the control points of a B-spline. If a start point
is given, this indicates the presence of an arrowhead. The start point touches one node of the corre-
sponding edge and the direction of the arrowhead is given by the vector from p1 to the start point. If
the start point is absent, the point p1 will touch the node. The analogous interpretation holds for an
end point and pN .


