
Editing graphs with dotty

Eleftherios Koutso�os
Stephen C. North

96b (06-24-96)

Abstract

dotty is a graph editor for the X Window System. It may be run as a standalone editor, or as
a front end for applications that use graphs. It can control multiple windows viewing di�erent
graphs.

dotty is written on top of dot and lefty. lefty is a general-purpose programmable editor for
technical pictures. It has an interpretive programming language similar to AWK and C. The user
interface and graph editing operations of dotty are written as lefty functions. Programmer-de�ned
graph operations may be loaded as well. Graph layouts are made by dot, which runs as a separate
process that communicates with lefty through pipes.

The screen dump below shows a snapshot of a typical dotty session.

Chapter 1. Overview

dotty is a graph editor built by combining the programmable graphics editor lefty [KD91] and the
graph layout tool dot [GKNV93]. lefty has been programmed to operate on internal representations
of graphs, and to allow the user to edit graphs. The lefty program that implements dotty starts
up dot as a separate process to compute layouts. When the user asks for a new layout, lefty sends
the graph to dot. dot computes the layout and outputs the graph (in the graph language notation)
with coordinate and size information as graph attributes. lefty then redraws the picture using the
new layout. dotty can manage several windows, displaying di�erent graphs. A future version will
support multiple views.

dotty can be customized to handle graphs for speci�c applications. For example, if a graph
is supposed to not have cycles, the user can edit the lefty function that inserts edges to check if
inserting an edge would create a cycle. dotty can also be programmed to communicate with other
processes. This allows it to be a front end for other tools. In this case, a tool can download its
state to dotty, as a graph, and whenever the user changes the graph, dotty sends a message to the
tool, which changes its state accordingly.

Upon startup, dotty opens a window labeled DOTTY. The window is empty, unless a graph �le
name was speci�ed on the command line, in which case the graph is displayed. The user can then
add and delete nodes and edges or change attributes such as color and shapes of nodes and edges.
dotty does not generate new layouts automatically. The user has to ask for a new layout explicitly.

As an example, the user can start up dotty and select load graph from the menu. Figure 1.1a
shows the DOTTY window and the dialog window that asks for the graph �le name. In this example,
the user asks for �le d.dot. Figure 1.1b shows the result of the load graph action.

(a) (b)

Figure 1.1: Loading a graph �le

1

The user can then insert more nodes and edges as shown in Figure 1.2a. Nodes can be inserted
by clicking the left mouse button over white space. Edges can be inserted by pressing the middle
button over the tail node and then, with the button held down, moving the mouse to the head
node and releasing the button. Figure 1.2b shows the graph after the user asks for a new layout.

(a) (b)

Figure 1.2: Inserting nodes and edges

The user can also change node and edge attributes. When the user presses the right mouse
button over a node or an edge, a node/edge-speci�c menu appears. One of its options is set attr.
Figure 1.3a shows the dialog box that pops up when the user selects that option over node n2. In
this case, the user is specifying that the shape of node n2 should be changed to a box. Figure 1.3b
shows the result.

The user can examine and change the lefty program that implements dotty by selecting the
option text view from the global menu. This opens a window labeled LEFTY Text View. The top
part of the window can be used to run lefty commands. The bottom part shows the current program.
Most entries are shown as ellipses (...). Clicking on an entry expands it one level. Figure 1.4a
shows the text view and Figure 1.4b shows the text view with the dotty entry expanded. dotty

contains all the functions and data structures for dotty.

2

(a) (b)

Figure 1.3: Changing attributes

(a) (b)

Figure 1.4: The text view

3

Chapter 2. System Description

The user can perform actions from either the WYSIWYG view or the program view. The WYSI-
WYG view is more intuitive. The program view is more useful for making global changes and for
customizing dotty. Customizations can be done online, by typing lefty expressions at the program
view, or by creating a lefty script in a �le and loading it in.

2.1 Graphical Interface

dotty supports multiple types of WYSIWYG views. Each type of view can have its own way of
displaying a graph and its own set of mappings from user actions to graph / picture operations.
By default, dotty provides two types of views: a normal view and a bird's-eye view.

A normal view displays the graph at 1:1 scale (1 dot point to 1 pixel). The widget containing
the graph grows or shrinks as the graph grows or shrinks. The user can use the scrollbars of the
outer widget to navigate through the graph. The user can also change the scale ratio to zoom in
or out.

A bird's-eye view keeps adjusting the scale ratio so that the graph always �ts entirely inside the
outer widget. As the graph grows or shrinks the scale ratio changes too. When the user clicks on
a location on this view dotty adjusts the viewing position of all the other views of the same graph
to center them on that location.

2.1.1 Normal View

dotty implements the following mouse and keyboard actions for the normal view.

left button. If the button is pressed over a node, that node moves to track the mouse. If the mouse
is over white space (not a node or edge) a new node is created at that position.

middle button. If the down event occurs over a node, a rubber-band line is displayed while the
mouse tracks over the picture. If the up event occurs when the mouse is over a node, a new
edge is created between the two nodes.

right button. This activates one of the next two menus, depending on the selection under the mouse.

global menu. This menu is activated when the right mouse button is pressed over white space.

undo undo the last insert / delete operation.

paste merge the subgraph previously constructed through the cut and copy oper-
ations with the current graph, centering it at the current position.

do layout generate a new graph layout through dot.

cancel layout abort the current graph layout operation. Works only if layoutmode is set
to async for the current graph.

redraw clear the window and redraw the graph.

new graph erase the current graph.

4

load graph load a graph from a dot �le. A requester is displayed, asking for the �le
name.

reload graph reload the current graph from its associated �le.

save graph save a graph in its associated dot �le.

save graph as save a graph in a dot �le. A requester is displayed, asking for the �le name.

open view

copy view

clone view

birdseye view

close view create or destroy views. open creates a new|empty|view, while close

closes the current view. copy and clone make copies of the current view.
Views created with clone share a single graph; changing the graph from any
view results in all views being updated. birdseye view is similar to clone,
except that the new view is of type bird's-eye.

zoom in

zoom out make the graph picture bigger or smaller. If the X server supports scalable
fonts, the node and edge labels are also scaled appropriately. Otherwise, a
font close in size to the desired one is chosen. If the picture does not �t in
the window, scrollbars appear to let the user pan on the graph.

find node �nd a node by name. A requester is displayed, asking for the node's name. If
a node is found, whose label attribute matches the user response, the graph
is redrawn so that this node appears centered.

print graph prints or stores in a �le a printable form of the current graph. Under UNIX,
if the user selects to store a �le, the �le is saved in PostScript format. Under
MS Windows, the graph is stored in the meta�le format. As a side-e�ect,
the graph is also pasted on the Clipboard.

text view toggle the display of the lefty text view.

quit terminate dotty.

node/edge-speci�c menu.

cut

Cut

copy

Copy the lowercase versions of these commands cut or copy the selected node or
edge. The uppercase versions cut or copy the selected node or edge and
recursively any other nodes and edges connected to the selected one. For
example, if there is the path: A -> B -> C and the user selects Copy on
node B, dotty will construct a clip graph that contains nodes B and C and
edge B -> C.

group

Group both of these commands ask for an attribute name. If the selected node does
not have that attribute, nothing happens. If it does, then group replaces all
the nodes that have that attribute and also have the same value assigned to

5

that attribute with a single node. All the edges starting or terminating on
one of the nodes to replace, are replaced by edges that start or terminate on
the new node.

delete

Delete

remove

Remove delete removes the seleced node or edge. remove asks for an attribute name.
If the selected node does not have that attribute, nothing happens. If it does,
then all the nodes that have the same attribute / value pair are removed.
The uppercase versions of the commands recursively remove all objects that
are only connected to the selected objects.

set attr set an attribute for a node or an edge. Refer to the dot manual for a list of
its attributes. dotty understands most but not all of dot's picture speci�c at-
tributes. For example, dotty understands shape=box but not shape=polygon.

print attr print on stdout all the attributes associated with the selected object.

keyboard events. Several keys are bound to actions. Currently, all of them are programmed as
short-cuts to menu actions. Similarly to menus, some keys work when pressed with the
mouse positioned over a node or edge while other work anywhere.

u undo

p paste

l do layout

k cancel layout

space redraw

L reload graph

s save graph

z or Z zoom in or zoom out but at a slower rate than the menu commands.

c or C copy or Copy

g or G group or Group

d or D delete or Delete

r or R remove or Remove

a set attr

Resizing a DOTTY window resizes the window frame only; the layout within maintains its size.

2.2 Programming Language Interface

The lefty program that controls dotty is contained in several �les. These scripts de�ne a set of
functions and a set of data structures. All functions and variables are stored under a table called
dotty.

6

2.2.1 Data Structures

dotty provides two main classes of objects, graphs and views. All graphs are stored in table
dotty.graphs and all views in table dotty.views.

protogt

graphs

protogt contains the default prototype graph. It is a table. One of its �elds is graph which
contains default values for graph, node, and edge attributes. protogt also contains all the func-
tions that operate on the graph, such as insertnode. protogt is used as an argument to the
creategraph function. The graph that this function creates uses the graph attribute values spec-
i�ed in protogt.graph. All operations on the new graph are performed through the functions
speci�ed in protogt. dotty provides one prototype graph. The programmer can create new pro-
totype graphs as well as partial prototypes that simply override some functions or data values.
graphs is a table that contains all the currently active graphs. The naming convention we use is
that each sub-table in graphs is called gt. This is done to distinguish the table containing all the
graph data and functions from gt.graph, the table that contains just the graph data.

protovt

views

protovt contains the default prototype view. Like protogt, this table contains both the data and
the functions that manage a view. For example, one of the data items is vsize. This is a table
that contains the x,y size of the view in pixels. One of the function items is leftdown that is
the function called when the user presses the left mouse button inside the view. protovt is used
in function createview to specify the size, position, and display characteristics of the new view.
dotty provides two prototype views, dotty.protovt.normal and dotty.protovt.birdseye. The
programmer can create new prototype views as well as partial prototypes that simply override some
functions or data values. views is a table that contains all the currently active views for all graphs.
The naming convention we use is that each sub-table in views is called vt.

gt.graph contains several tables. The three most imprortant are:

nodedict

nodes

edges

nodedict contains a mapping of node names to node ids. nodes is the global table of nodes,
indexed by node id. edges is the global table of edges, indexed by edge id. Node and edge ids are
small unique integers. Each node and edge entry is a table. Each entry has a subtable called attr

that contain all the key-value attribute pairs. Each node table has an edges sub-table containing
all the edges that start or terminate on that node. Each edge table has two entries called tail and
head that are references to the two nodes that this edge connects.

2.2.2 Graph Functions

dotty.init function ()

Initializes dotty.

7

gt.creategraph (protogt)

gt.copygraph (ogt)

gt.destroygraph (gt)

gt.loadgraph (gt, name, type, protograph, layoutflag)

gt.savegraph (gt, name, type, savecoord)

gt.setgraph (gt, graph)

gt.erasegraph (gt, protogt, protovt)

gt.layoutgraph (gt)

dotty.monitorfile (data)

creategraph creates and returns a new graph based on the protogt prototype graph. If protogt
is null, dotty.protogt is used instead. If protogt.mode is set to 'replace', then protogt must
contain all the entries for a prototype graph. Otherwise, any entries not speci�ed in protogt are
taken from dotty.protogt. copygraph creates and returns a new graph by copying an older graph
(ogt). destroygraph removes a graph and all its views. loadgraph reads in a graph. type speci�es
whether to read the graph from a �le (value 'file') or a pipe ('pipe'). protograph is a prototype
for the graph data. If set to null, dotty.protogt.graph is used. If layoutflag is 1 then this
function runs gt.layoutgraph (gt) before returning. savegraph saves a graph to a �le or pipe.
If savecoord is 1, the node and edge coordinates are saved in the graph. setgraph sets the graph
data of gt to graph. erasegraph replaces the graph data of gt with protogt.graph and resets
all the views for gt to the values of protovt. layoutgraph initiates a graph layout for graph gt.
This involves writing out the graph to a pipe connected to a graph layout process, usually dot. If
gt.layoutmode is set to 'sync', the function waits for the dot process to return the layout infor-
mation, updates the graph coordinates and redraws the graph in all its views. If gt.layoutmode
is set to 'async' then the function returns. To complete the layout, function dotty.monitorfile

must be called. By default, dotty assigns dotty.monitorfile to monitorfile. This instructs
lefty to call this function whenever there is input from a registered �le descriptor. layoutgraph

registers the �le descriptor of the dot pipe. If dotty is used in another application this application
must arrange for the same e�ect. If the application needs to have its own monitorfile, it must
arrange for that function to call dotty.monitorfile if the �le descriptor is a dot �le descriptor.
dotty.monitorfile returns 1 if it was one of the �le descriptors it handles, 0 otherwise.

gt.createview (gt, protovt)

gt.destroyview (gt, vt)

createview creates and returns a new view based on the protovt prototype view. If protovt.mode
is null, dotty.protovt is used instead. If protovt.mode is set to 'replace', then protovt must
contain all the entries for a prototype view. Otherwise, any entries not speci�ed in protovt are
taken from dotty.protovt. destroyview destroys a view.

gt.zoom (gt, vt, factor, pos)

zooms in or out in a view. If factor is less than 1, the graph becomes larger. If factor is greater
than 1 the graph becomes smaller.

gt.findnode (gt, vt)

asks for a node name or label. If such a node exists, the view is repositioned so that this node
appears at the center.

8

gt.setattr (gt, obj)

gt.getattr (gt, node)

setattr asks for a key=val response from the user then sets the object's attribute key to val. obj
must be a node or edge object. getattr asks for a key name. If the speci�ed node has an attribute
called key, this function returns a table with two �elds, key and val.

dotty.createviewandgraph (name, type, protogt, protovt)

dotty.simple (file)

createviewandgraph is a utility function that calls creategraph, createview, and loadgraph.
simple calls createviewandgraph with arguments (file, 'file', null, null).

dotty.pushbusy (gt, views)

dotty.popbusy (gt, views)

These functions implement a stack. As long as there is something on the stack, the shape of the
mouse pointer is the hourglass icon. When the stack becomes empty, the pointer reverts to its
default icon.

gt.printorsave (gt, vt, otype, name, mode, ptype)

This function prints out a graph or saves it in a �le. otype can be printer or file. If it is file,
the UNIX version of dotty will generate a PostScript �le. The MS Windows version will generate
a Meta�le and also post the picture to the Clipboard. name is the name of the �le when otype

is file, otherwise it's ignored. mode can be portrait, landscape, or best fit, to specify the
orientation of the drawing. ptype can be 8.5x11, 11x17, or 36x50 to select the paper size. All
arguments after vt may be null in which case dotty will prompt the user for values.

gt.getnodesbyattr (gt, key, val)

gt.reachablenodes (gt, node)

getnodesbyattr return a table of nodes that contain the key=val attribute pair. This table is
indexed by node id. reachablenodes returns a table of nodes that are reachable through one or
more levels of edges from node.

gt.insertsgraph (gt, name, attr, show)

gt.removesgraph (gt, sgraph)

gt.mergegraph (gt, graph, show)

gt.insertnode (gt, pos, size, name, attr, show)

gt.removenode (gt, node)

gt.insertedge (gt, nodea, porta, nodeb, portb, attr, show)

gt.removeedge (gt, edge)

gt.swapedgeids (gt, edge1, edge2)

gt.removesubtree (gt, obj)

gt.removenodesbyattr (gt, key, val)

gt.removesubtreesbyattr (gt, key, val)

gt.groupnodes (gt, nlist, gnode, pos, size, attr, keepmulti, show)

gt.groupnodesbyattr (gt, key, val, attr, keepmulti, show)

gt.cut (gt, obj, set, mode, op)

9

gt.paste (gt, pos, show)

gt.undo (gt, show)

gt.startadd2undo (gt)

gt.endadd2undo (gt)

These functions manipulate the graph structure. insertsgraph inserts a subgraph in graph gt.
removesgraph removes a subgraph. mergegraph merges graph into gt.graph. Each pair of nodes
with the same name in both graphs are merged into a single node. insertnode inserts a new node at
position pos with size size. pos and size may be null. removenode removes a node. insertedge
inserts an edge between the two nodes referenced by nodea and nodeb. porta and portb are strings
that correspond to dot edge ports. removeedge removes an edge. swapedgeids swaps the edge
ids of the edges referenced by edge1 and edge2. Nodes and edges are sent to dot sorted by their
ids. removesubtree removes the node or edge referenced by obj and recursively all nodes that are
only connected to nodes deleted in the previous phase. For example, if we call removesubtree on
node A in the graph A -> B -> C, D -> C, it will delete nodes A and B but not C because C is also
connected to D. removenodesbyattr and removesubtreebyattr remove all nodes (or all nodes and
their connected subtrees) that contain the key=val attribute pair. groupnodes replaces the list of
nodes in table nlist with a single node. This node is gnode if not null, or a new node created
by groupnodes. keepmulti may be 0 or 1 to indicated whether to eliminate multiple edges to and
from the group node. With keepmulti set to 1, if we group nodes B and C together in the graph A

-> B, A -> C we get the graph A -> NEW, A -> NEW. groupnodesbyattr calls groupnodes with
nlist set to the list of nodes that contain the key=val attribute pair. cut cuts or copies pieces
of a graph to the clipgraph. obj is a reference to a node or edge. set may be one or reachable
to select just the object, or the object and its reachable set. mode can be support or normal. If
set to support, the selection will include edges that have only one of their endpoints attached to
a node in the selection (by default only edges with both endpoints in the selection are included).
To accomplish this, new support nodes are created to replace the nodes not in the selection. op

may be 'cut' or 'copy'. paste merges the current clipgraph with graph gt. undo undoes the
most recent insertion or deletion of nodes or edges. dotty keeps an undo list per graph going back
to the last major operation, such as loadgraph. startadd2undo and endadd2undo can be used to
group multiple insert and delete operations in one undo entry. For example, removesubtree calls
startadd2undo before removing any nodes and endadd2undo afterwards. When undo is called to
undo the subtree removal, all the nodes and edges of the subtree will be re-inserted at once. The
attr argument in all these functions is a list of key-value pairs to be attached to the node or edge
speci�ed in the call. show can be 0 or 1 to indicate that the inserted object must be displayed at
once or not. Removed objects are immediately removed from the display.

gt.startlayout (gt)

gt.finishlayout (gt)

gt.cancellayout (gt)

startlayout sends a graph to a layout process, usually dot. finishlayout receives the layout
results and updates the positions and sizes of the nodes and edges. It does not redraw the graph.
If gt.layoutmode is 'sync', gt.layoutgraph calls startlayout and then finishlayout. If the
mode is 'async' gt.layoutgraph calls just startlayout and finishedlayout is called from
dotty.monitorfile. cancellayout cancels the layout pending for the graph. This is only possible
when gt.layoutmode is 'async'.

10

gt.drawgraph (gt, views)

gt.redrawgraph (gt, views)

gt.setviewsize (views, r)

gt.setviewscale (views, factor)

gt.setviewcenter (views, center)

gt.getcolor (views, name)

drawgraph draws the graph in all the views. views is a table of views. It can be gt.views, i.e.
all the views that this graph has, or a subset of them. redrawgraph �rst clears the canvases then
draws the graph. setviewsize sets the size of the canvases that contain the graph. finishlayout
calls this function to adjust the size of the canvases after a layout is complete. setviewscale sets
the scale factor of the views. setviewcenter adjusts the relative position of the canvases to their
outer widgets so that point center appears in the middle of the outer widget. getcolor returns
a color id corresponding to the color name. name is a string. It may contain a color name such
as blue, or a triplet of HSV values. If such a color was used before in a graph, getcolor simply
returns the color id assigned to the color, otherwise it allocates a new id, sets its color value to
name and returns the id.

gt.drawsgraph (gt, views, sgraph)

gt.undrawsgraph (gt, views, sgraph)

gt.drawnode (gt, views, node)

gt.undrawnode (gt, views, node)

gt.movenode (gt, node, pos)

gt.drawedge (gt, views, edge)

gt.undrawedge (gt, views, edge)

drawsgraph and undrawsgraph draw or erase subgraph sgraph in all the views. Only cluster
subgraphs are currently drawn. drawnode and undrawnode draw or erase node in views. They
use the node's shape attribute to select a function in gt.shapefunc. movenode repositions node
to location pos. All the edges attached to the node move too. drawedge and undrawedge draw or
erase edge.

gt.shapefunc.record (gt, canvas, node)

gt.shapefunc.plaintext (gt, canvas, node)

gt.shapefunc.box (gt, canvas, node)

gt.shapefunc.Msquare (gt, canvas, node)

gt.shapefunc.ellipse (gt, canvas, node)

gt.shapefunc.circle (gt, canvas, node)

gt.shapefunc.doublecircle (gt, canvas, node)

gt.shapefunc.diamond (gt, canvas, node)

gt.shapefunc.parallelogram (gt, canvas, node)

gt.shapefunc.trapezium (gt, canvas, node)

gt.shapefunc.triangle (gt, canvas, node)

These are the shape functions provided by dotty. canvas is the widget id of the canvas widget to
draw in. The programmer can replace any or all of these functions with di�erent versions. The
programmer could also add functions for new shapes. In this case, however, the programmer needs
to arrange for dot to recognise these shapes.

11

gt.unpacksgraphattr (gt, sgraph)

gt.unpacknodeattr (gt, node)

gt.unpackedgeattr (gt, edge)

gt.unpackattr (gt)

These functions convert attributes from their string representations in the attr sub-table of the
graph objects, to values that can be used by lefty. Some attributes such as fontsize are just
converted from strings to integers. Other need more complex translations. For example, func-
tion getcolor is used on all color and fontcolor attributes. The �rst three functions oper-
ate on a single object, while the fourth operates on all the objects of the graph. unpackattr

is called by loadgraph after a graph is read in. The �rst three functions are usually called to
change the appearance of an object after one of its attributes has changed. This is done with a
sequence like: gt.undrawnode (gt, node); node.attr.color = 'blue'; gt.unpacknodeattr

(gt, node); gt.drawnode (gt, node);. These functions are not used to convert layout infor-
mation received from a layout process, which is also received as dot string attributes. finishlayout
does that immediately.

gt.doaction (data, s)

This function takes a string specifying an action (s) and a table (data) specifying the graph object
and a screen location. If the object data.obj is a node or an edge, doaction calls the appropriate
action function with arguments: (gt, vt, data.obj, data). If data.obj is null, it calls a global
action function with arguments (gt, vt, data). Each graph contains a table gt.actions with
three sub-tables: general, node, and edge. Each sub-table contains key-value pairs where the key
is the name of an action and the value is the corresponding function.

gt.actions.general["undo"] (gt, vt, data)

gt.actions.general["paste"] (gt, vt, data)

gt.actions.general["do layout"] (gt, vt, data)

gt.actions.general["cancel layout"] (gt, vt, data)

gt.actions.general["redraw"] (gt, vt, data)

gt.actions.general["new graph"] (gt, vt, data)

gt.actions.general["load graph"] (gt, vt, data)

gt.actions.general["reload graph"] (gt, vt, data)

gt.actions.general["save graph"] (gt, vt, data)

gt.actions.general["save graph as"] (gt, vt, data)

gt.actions.general["open view"] (gt, vt, data)

gt.actions.general["copy view"] (gt, vt, data)

gt.actions.general["birdseye view"] (gt, vt, data)

gt.actions.general["clone view"] (gt, vt, data)

gt.actions.general["close view"] (gt, vt, data)

gt.actions.general["zoom in"] (gt, vt, data)

gt.actions.general["zoom out"] (gt, vt, data)

gt.actions.general["zoom in slowly"] (gt, vt, data)

gt.actions.general["zoom out slowly"] (gt, vt, data)

gt.actions.general["find node"] (gt, vt, data)

gt.actions.general["print graph"] (gt, vt, data)

12

gt.actions.general["text view"] (gt, vt, data)

gt.actions.general["quit"] (gt, vt, data)

These are the default global actions. They are invoked by the default global menu and key bindings,
but the programmer can also call them directly.

gt.actions.node["cut"] (gt, vt, obj, data)

gt.actions.node["Cut"] (gt, vt, obj, data)

gt.actions.node["copy"] (gt, vt, obj, data)

gt.actions.node["Copy"] (gt, vt, obj, data)

gt.actions.node["group"] (gt, vt, obj, data)

gt.actions.node["Group"] (gt, vt, obj, data)

gt.actions.node["delete"] (gt, vt, obj, data)

gt.actions.node["Delete"] (gt, vt, obj, data)

gt.actions.node["remove"] (gt, vt, obj, data)

gt.actions.node["Remove"] (gt, vt, obj, data)

gt.actions.node["set attr"] (gt, vt, obj, data)

gt.actions.node["print attr"] (gt, vt, obj, data)

These are the default node actions. They are invoked by the default node-speci�c menu and key
bindings, but the programmer can also call them directly.

gt.actions.edge["cut"] (gt, vt, obj, data)

gt.actions.edge["Cut"] (gt, vt, obj, data)

gt.actions.edge["copy"] (gt, vt, obj, data)

gt.actions.edge["Copy"] (gt, vt, obj, data)

gt.actions.edge["group"] (gt, vt, obj, data)

gt.actions.edge["Group"] (gt, vt, obj, data)

gt.actions.edge["delete"] (gt, vt, obj, data)

gt.actions.edge["Delete"] (gt, vt, obj, data)

gt.actions.edge["set attr"] (gt, vt, obj, data)

gt.actions.edge["print attr"] (gt, vt, obj, data)

These are the default edge actions. They are invoked by the default edge-speci�c menu and key
bindings, but the programmer can also call them directly.

2.2.3 View Functions

A view table contains a set of user interface functions. These are called with argument data, which
is the standard lefty table passed to a user interface function. It contains sub�elds widget, obj,
and pos. If the user event is a mouse button or keyboard key up event, the table also contains pobj
and ppos, corresponding to the �elds obj and pos of the matching down event. dotty provides two
set of functions, one for the normal view and one for the bird's-eye view.

vt.uifuncs['leftdown'] (data)

vt.uifuncs['leftmove'] (data)

vt.uifuncs['leftup'] (data)

vt.uifuncs['middledown'] (data)

13

vt.uifuncs['middlemove'] (data)

vt.uifuncs['middleup'] (data)

vt.uifuncs['rightdown'] (data)

vt.uifuncs['keyup'] (data)

vt.uifuncs['redraw'] (data)

vt.uifuncs['closeview'] (data)

Both the normal and the bird's-eye view sets contain these functions. The left* functions perform
di�erent operations in the two sets but the rest are identical. All but the last two functions perform
the operations described at the beginning of this chapter. redraw is called by lefty when it receives
a re-paint event from the window system. closeview is called when lefty receives an event to close
one of its top-level widget. If this function does not exist, lefty will exit when the user tries to close
one of the views. This function needs to call the destroyview function if it decides to allow the
closing. Function rightdown uses the table vt.menus to construct a menu to display. vt.menus has
three sub-tables called general, node, and edge. Function keyup uses a similar table (vt.keys)
to map keys to actions.

14

Chapter 3. Customizing dotty

An important aspect of dotty is that it can readily be customized to handle application-speci�c
graphs. A simple type of customization is to change the user interface functions such as leftup to
do something di�erent. More complex customizations could involve adding new editing operations
and setting up communication channels with other processes.

The rest of this section provides some general guidelines for customizing dotty and some exam-
ples.

3.1 General Guidelines

The scripts in the dotty*.lefty �les do not perform any actions (besides loading several functions
and data structures). Therefore, it should not be necessary to change these �les. The simplest
approach is to create a new lefty script, say new.lefty. This script could load dotty.lefty,
de�ne new functions and overide prede�ned functions, and �nally start up the main event loop:

load ('dotty.lefty');

new.protogt = [

'actions' = copy (dotty.protogt.actions);

new actions are added later in this file

];

new.protovt = [

'name' = 'NEW';

'type' = 'normal';

other entries are added later in the file

];

new.protogt.actions.general['play fwd'] = function (gt, vt, data) {

while (new.next (gt))

;

};

new.protovt.uifuncs.leftup = function (data) {

local gt;

gt = dotty.graphs[dotty.views[data.widget].gtid];

if (new.next (gt) == 0)

echo ('at end of log');

};

new.main = function () {

dotty.init ();

dotty.createviewandgraph (null, 'file', new.protogt, new.protovt);

...

};

new.main ();

15

dotty uses the LEFTYPATH environment variable to �nd �les to load. This is a colon separated
list (like PATH). Thus, any �les you use for customization should be in directories pointed to by
LEFTYPATH.

In general, data structures can be read directly. For example,

a = dotty.views[10].colors.blue;

assigns the color id that is mapped to 'blue' to variable a. Updating values, however, must be done
through functions. For example, to make a new color mapping, one should call

gt.getcolor ([10 = dotty.views[10];], 'pink');

instead of doing the assignment

dotty.views[10].colors['pink'] = 13;

since more is required than just adding another entry to the colors table.
A graph contains the following �elds.

graphattr = [...];

graphdict = [...];

graphs = [...];

edgeattr = [...];

edgedict = [...];

edges = [...];

nodeattr = [...];

nodedict = [...];

nodes = [...];

The structure of these �elds is very similar to that of dot. graphs is an array of subgraphs. nodes
is an array of the nodes in the graph. edges is the array of edges. Each node contains an edges

table that holds all the edges attached to the node.
Node- or edge-speci�c information can be added to one of two places:
under the object's attr table, e.g. node.attr.state = 'NJ';

under the object's main table, e.g. node.state = 'NJ';

Information added to the attr table is sent to dot when the graph is drawn, and is also saved
in the graph �le. This means that one should not store table objects in attr since dot does not
understand them.

If an attribute has to be mapped in some way (between dot's representation, and dotty's internal
values) the mapping is stored in the node's main table. For example, if node.attr.color is 'blue',
node.color may contain the internal color index 2.

3.2 Examples

Appendix B contains the complete source for the �rst example.

16

3.2.1 Finite Automaton Simulator

In this tool, an automaton is displayed as a directed graph. A sequence of state transitions can be
loaded in and animated either in single step or in continuous mode, forwards or backwards. If the
graph does not �t in the window, the window is scrolled to always keep the current node visible.
Figure 3.1 shows two consecutive snapshots.

(a) (b)

Figure 3.1: Finite Automaton Simulator

After loading the graph that represents an automaton, fa.lefty also loads a sequence of state
transitions from a �le.

fa.loadtrans = function (filename) {

local fd, i;

if (~((fd = openio ('file', filename, 'r')) >= 0)) {

echo ('cannot open transition file: ', filename);

return;

}

echo ('reading transition file');

i = 0;

while ((fa.trans[i] = readline (fd)))

i = i + 1;

closeio (fd);

fa.trani = 0;

fa.states[0] = fa.currstate;

fa.currstate.count = 1;

};

17

Array fa.states stores all the states the automaton goes through while executing the speci�ed
transitions. fa.next executes the next transition (pointed to by fa.transi). First, it �nds the
edge in the graph that corresponds to the transition. If such an edge exists, the node at the head
of the edge becomes the current node and is highlighted. Any nodes that the automaton has been
through also use a distinctive color. All other nodes are white.

fa.next = function (gt) {

local label, eid, edge, tran;

if (~(label = fa.trans[fa.trani]))

return 0;

for (eid in fa.currstate.edges) {

edge = fa.currstate.edges[eid];

if (edge.attr.label == label & edge.tail == fa.currstate) {

tran = edge;

break;

}

}

if (tran) {

fa.trani = fa.trani + 1;

fa.setcolor (gt, fa.currstate);

fa.currstate = (fa.states[fa.trani] = tran.head);

if (fa.currstate.count)

fa.currstate.count = fa.currstate.count + 1;

else

fa.currstate.count = 1;

fa.setcurrcolor (gt, fa.currstate);

if (fa.trackcur)

fa.focuson (gt, fa.currstate);

}

return 1;

};

fa.prev moves backwards through the transition sequence. fa.leftup advances one step for-
ward in the transition log by calling fa.next. fa.middleup moves one step backwards.

fa.protovt.uifuncs.leftup = function (data) {

local gt;

gt = dotty.graphs[dotty.views[data.widget].gtid];

if (fa.next (gt) == 0)

echo ('at end of log');

};

fa.setcolor sets the color of the node that used to be the current node. node.count keeps
track how many times the node has been visited and sets its color accordingly.

18

fa.setcolor = function (gt, node) {

if (node.count) {

node.attr.style = 'filled';

node.attr.color = fa.highlightcolor;

} else {

gt.undrawnode (gt, gt.views, node);

remove ('style', node.attr);

node.attr.color = fa.normalcolor;

}

gt.unpacknodeattr (gt, node);

gt.drawnode (gt, gt.views, node);

};

fa.setcurrcolor sets the color of the current node. fa.focuson adjusts the graph window so
that node appears at the center.

fa.focuson = function (gt, node) {

gt.setviewcenter (gt.views, node.pos);

};

3.2.2 ldbx: Graphical Display of Data Structures

ldbx is a prototype two-view debugger built by combining dotty with dbx, the system's standard
debugger. In ldbx, the user can access dbx by typing commands as usual. At the same time, the
user can also ask dotty to display the value of a variable graphically. Figure 3.2 shows a snapshot
of ldbx. The top window is a dotty window. The bottom window is an xterm window. The user
has typed several debugger commands in the bottom window. Some of these commands displayed
values of variables. In the dotty window, the user has asked ldbx to print the value of result (the
root of the graph). The user has then clicked over the boxes that contain pointer values (the dots)
to show the structure the pointer was pointing to.

ldbx runs the system debugger as a separate process. A multiplexing process allows both the
user and dotty to communicate with the debugger. When the user types a command in the window
on the right, the multiplexor sends it to dbx and displays the response in the same window. When
dotty sends a message, the multiplexor sends the message to dbx and collects the response. It
parses the response and generates a graph. It then sends this graph to dotty, in the form of lefty
statements. ldbx.doquery handles the communication with the multiplexing process.

19

Figure 3.2: Visual Display of Data Structures

ldbx.doquery = function (var) {

...

if (var) {

writeline (ldbx.mpfd, concat ('print ', var));

ldbx.gt.graph = ldbx.gt.erasegraph (ldbx.gt,

ldbx.protogt, ldbx.protovt);

ldbx.nodes = [];

while ((s = readline (ldbx.mpfd)) ~= '')

run (s);

ldbx.gt.unpackattr (ldbx.gt);

ldbx.gt.layoutgraph (ldbx.gt);

}

};

20

dotty sends the message print variable and then processes any response. The response is a
sequence of lefty statements, such as calls to ldbx.insertnode and ldbx.insertedge.

ldbx.insertnode = function (ident, data) {

local node;

if (~(node = ldbx.nodes[ident]))

node = ldbx.gt.insertnode (ldbx.gt, null, null, null,

['ident' = ident;], 0);

node.data = data;

node.attr.label = concat ('{', ldbx.makelabel (node, node.data), '}');

ldbx.nodes[ident] = node;

};

ldbx.insertedge = function (identa, portida, identb, portidb) {

if (~ldbx.nodes[identa])

ldbx.nodes[identa] = ldbx.gt.insertnode (ldbx.gt, null, null, null,

['ident' = identa;], 0);

if (~ldbx.nodes[identb])

ldbx.nodes[identb] = ldbx.gt.insertnode (ldbx.gt, null, null, null,

['ident' = identb;], 0);

ldbx.gt.insertedge (ldbx.gt, ldbx.nodes[identa], concat ('f', portida),

ldbx.nodes[identb], concat ('f', portidb), null, 0);

};

21

Chapter 4. Related Work

The �rst interactive graph browser as such appears to be the GRAB system created by Messinger,
Rowe, et al at U.C. Berkeley [RDM+87]. GRAB can read command �les or scripts but has no
provision for customization. Newbery's EDGE and Himsolt's GRAPHED are more recent de-
signs. EDGE [NT87], written in C++, is customized by deriving new classes from EDGE classes.
GRAPHED [Him], a large C program, is customized by linking in user-de�ned event handlers.
GRAPHED contains a rich set of data structures for base graphs, layouts, and graph grammars,
as well as its representations of commands and events. Its orientation seems to be graph layout
algorithms, not user interface, thus almost all the user-contributed applications distributed with
the system are a thousand lines of code or more.

The advantage of dotty as compared to programming with a C or C++ graph display library
is that dotty (lefty) is higher level and thus seems more appropriate for graphical user interface
customization. In our experience, the graph algorithms or interaction techniques that users want
to add to the base graph viewer are generally straightforward. We feel that designing these as lefty
scripts is a good alternative to trying to compile and link a modest piece of C code into a much
larger existing program. The limitation here is that to some extent the programmer must accept the
user interface model supported by lefty. For example, at this time popup windows are supported;
pulldown menu bars are not. On the other hand, though arbitrary C code can be compiled into
EDGE or GraphEd, care would be needed to program these widgets in a way that is compatible
with the base editor. For these reasons we feel dotty is a good alternative to using class libraries
to create customized graph browsers.

22

Chapter 5. Conclusions

dotty is not only a good general-purpose graph editor, but a
exible tool for constructing graphical
front ends for other tools. The programmability of lefty makes building front ends straightforward.
dot's good performance and high quality layouts result in fast response and pleasing pictures.

23

Appendix A. Running dotty

dotty can be started by issuing the command:

dotty [-V] [-lm sync|async] [-el 0|1] [file1 file2 ...]

If
ag -V is speci�ed, the program version is printed. If the option -lm sync is speci�ed, then
graph layouts will be computed online (dotty will block until a layout is �nished). The option -el

1 enables the printing of warning messages. If �le names are speci�ed on the command line, the
graphs contained in these �les will be displayed each in its own dotty window.

24

Appendix B. Program Listings

B.1 Finite Automaton Simulator

load ('dotty.lefty');

fa = [];

fa.normalcolor = 'black';

fa.highlightcolor = 'light_grey';

fa.currentcolor = 'tan';

fa.trackcur = 0;

fa.init = function () {

dotty.init ();

monitorfile = dotty.monitorfile;

};

fa.protogt = [

'layoutmode' = 'sync';

'actions' = copy (dotty.protogt.actions);

new actions are added later in the file

];

fa.protovt = [

'name' = 'FA';

'type' = 'normal';

other entries are added later in the file

];

fa.main = function () {

local gnvt, gt;

gnvt = dotty.createviewandgraph (null, 'file', fa.protogt, fa.protovt);

gt = gnvt.gt;

gt.loadgraph (gt, 'fa.dot', 'file', fa.protogt.graph, 1);

fa.currstate = gt.graph.nodes[gt.graph.nodedict['start']];

fa.loadtrans ('fa.trans');

fa.setcurrcolor (gt, fa.currstate);

fa.focuson (gt, fa.currstate);

};

fa.loadtrans = function (filename) {

local fd, i;

if (~((fd = openio ('file', filename, 'r')) >= 0)) {

echo ('cannot open transition file: ', filename);

return;

}

echo ('reading transition file');

i = 0;

25

while ((fa.trans[i] = readline (fd)))

i = i + 1;

closeio (fd);

fa.trani = 0;

fa.states[0] = fa.currstate;

fa.currstate.count = 1;

};

fa.next = function (gt) {

local label, eid, edge, tran;

if (~(label = fa.trans[fa.trani]))

return 0;

for (eid in fa.currstate.edges) {

edge = fa.currstate.edges[eid];

if (edge.attr.label == label & edge.tail == fa.currstate) {

tran = edge;

break;

}

}

if (tran) {

fa.trani = fa.trani + 1;

fa.setcolor (gt, fa.currstate);

fa.currstate = (fa.states[fa.trani] = tran.head);

if (fa.currstate.count)

fa.currstate.count = fa.currstate.count + 1;

else

fa.currstate.count = 1;

fa.setcurrcolor (gt, fa.currstate);

if (fa.trackcur)

fa.focuson (gt, fa.currstate);

}

return 1;

};

fa.prev = function (gt) {

if (fa.trani == 0)

return 0;

remove (fa.trani, fa.states);

fa.trani = fa.trani - 1;

fa.currstate.count = fa.currstate.count - 1;

fa.setcolor (gt, fa.currstate);

fa.currstate = fa.states[fa.trani];

fa.setcurrcolor (gt, fa.currstate);

if (fa.trackcur)

fa.focuson (gt, fa.currstate);

return 1;

26

};

fa.setcolor = function (gt, node) {

if (node.count) {

node.attr.style = 'filled';

node.attr.color = fa.highlightcolor;

} else {

gt.undrawnode (gt, gt.views, node);

remove ('style', node.attr);

node.attr.color = fa.normalcolor;

}

gt.unpacknodeattr (gt, node);

gt.drawnode (gt, gt.views, node);

};

fa.setcurrcolor = function (gt, node) {

node.attr.style = 'filled';

node.attr.color = fa.currentcolor;

gt.unpacknodeattr (gt, node);

gt.drawnode (gt, gt.views, node);

};

fa.focuson = function (gt, node) {

gt.setviewcenter (gt.views, node.pos);

};

fa.protogt.actions.general['play fwd'] = function (gt, vt, data) {

while (fa.next (gt))

;

};

fa.protogt.actions.general['play bwd'] = function (gt, vt, data) {

while (fa.prev (gt))

;

};

fa.protogt.actions.general['track node'] = function (gt, vt, data) {

if (fa.trackcur)

fa.trackcur = 0;

else {

fa.trackcur = 1;

fa.focuson (gt, fa.currstate);

}

};

fa.protovt.menus = [

'general' = [

0 = "undo";

1 = "paste";

2 = "do layout";

3 = "cancel layout";

4 = "redraw";

27

5 = "new graph";

6 = "load graph";

7 = "reload graph";

8 = "open view";

9 = "copy view";

10 = "clone view";

11 = "birdseye view";

12 = "close view";

13 = "play fwd";

14 = "play bwd";

15 = "zoom in";

16 = "zoom out";

17 = "find node";

18 = "track node";

19 = "print graph";

20 = "text view";

21 = "quit";

];

'node' = [

0 = "cut";

1 = "Cut";

2 = "copy";

3 = "Copy";

4 = "group";

5 = "Group";

6 = "delete";

7 = "Delete";

8 = "remove";

9 = "Remove";

10 = "set attr";

11 = "print attr";

];

'edge' = [

0 = "cut";

1 = "Cut";

2 = "copy";

3 = "Copy";

4 = "group";

5 = "Group";

6 = "delete";

7 = "Delete";

8 = "set attr";

9 = "print attr";

];

];

28

fa.protovt.uifuncs.rightdown = dotty.protovt.normal.uifuncs.rightdown;

fa.protovt.uifuncs.keyup = dotty.protovt.normal.uifuncs.keyup;

fa.protovt.uifuncs.redraw = dotty.protovt.normal.uifuncs.redraw;

fa.protovt.uifuncs.closeview = dotty.protovt.normal.uifuncs.closeview;

fa.protovt.uifuncs.leftup = function (data) {

local gt;

gt = dotty.graphs[dotty.views[data.widget].gtid];

if (fa.next (gt) == 0)

echo ('at end of log');

};

fa.protovt.uifuncs.middleup = function (data) {

local gt;

gt = dotty.graphs[dotty.views[data.widget].gtid];

if (fa.prev (gt) == 0)

echo ('at start of log');

};

29

Bibliography

[GKNV93] E.R. Gansner, E. Koutso�os, S.C. North, and K.P. Vo. A technique for drawing directed
graphs. IEEE-TSE, March 1993.

[Him] M. Himsolt. Graphed 3.0. available by anonymous ftp to forwiss.uni-passau.de
(132.231.1.10) in /pub/local/graphed.

[KD91] Eleftherios Koutso�os and David Dobkin. Lefty: A two-view editor for technical pic-
tures. In Graphics Interface '91, Calgary, Alberta, pages 68{76, 1991.

[NT87] Frances Newbery and Walter Tichy. Knowledge Based Editors for Directed Graphs.
In H. Nichols and D. Simpson, editors, 1st European Software Engineering Conference,
pages 101{109. Springer Verlag, 1987.

[RDM+87] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan. A browser
for directed graphs. Software|Practice and Experience, 17(1):61{76, 1987.

30

