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1 Introduction

Graphviz is a collection of software for viewing and manipulating abstract
graphs. It provides graph visualization for tools and web sites in domains such
as software engineering, networking, databases, knowledge representation,
and bio-informatics. Hundreds of thousands of copies have been distributed
under an open source license.

The core of Graphviz consists of implementations of various common types
of graph layout. These layouts can be used via a C library interface, stream-
based command line tools, graphical user interfaces and web browsers. As-
pects which distinguish the software include a retention of stream-based in-
terfaces in conjunction with a variety of tools for graph manipulation, and
support for a wide assortment of graphical features and output formats. The
former makes it possible to write high-level programs for querying, modify-
ing and displaying graphs. The latter allows Graphviz to be useful in a wide
range of areas, with applications far removed from academic exercises.

The algorithms of Graphviz concentrate on static layouts. Dynagraph is a
sibling of Graphviz, with algorithms and interactive programs for incremental
layout. At the library level, it provides an object-oriented interface for graphs
and graph algorithms.

2 Applications

Many applications employ Graphviz to produce graph layouts in order to
assist their users to better understand domain information or to perform
some task visually. In particular, the stream model supported by Graphviz
lends itself to applications that need an external graph visualization service
with a graphical or web interface. It is simple to emit graph models in the
dot language [15] and then load them into a customized version of one of the
Graphviz viewers, or to generate server-side web content as clickable images,
Adobe PDF or SVG metafiles.

We will briefly survey some successful application areas.
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2.1 Software Engineering.

The complexity of large software modules, programs and protocols is a seri-
ous impediment to understanding and changing them, and thus is a problem
with great economic significance. Software visualization is one attack on this
problem. The idea is to model some aspect of software as a graph, and present
the graph as a drawing to make it easier to understand the model. Graphs are
convenient for describing the data types, functions, variables, control struc-
tures, files and even bugs in source code programs, or the structure of finite
state machines and grammars. They can be created from static analysis, dy-
namic traces, or other sources. Some practical systems that rely on Graphviz
for software visualization are the Acacia [4], Doxygen [35], and Mono [10]
static analysis systems, the Syntacs toolkit for Java compiler generation [24],
the Spin concurrent protocol analyzer [21] and the Bugzilla bug tracking
system [1] originally created for the Mozilla (Netscape) open source project.

Graphviz has also been applied to digital logic design, database schema
design, knowledge representation, Bayesian networks and decision diagrams,
to name a few other areas in related branches of engineering and technology.

2.2 Bio-informatics.

Graphs arise naturally in metabolic network models, gene and protein se-
quences and in studies of other biological structures. Graphs are often gen-
erated from experimental data, or extracted by cross-referencing the liter-
ature. For example, PubGene [23] is a biological database application that
employs Graphviz as a web visualization service. The database describes the
co-citation of mouse, rat and human gene symbols in an archive of over 10
million articles from PubMed. Interactive queries allow exploring the neigh-
borhood around a set of genes given by standard names.

The Protein Interaction Extraction System (PIES) [38] is a platform for
exploring bio-medical abstracts using Graphviz. With it, the user can call
up research abstracts from online sources, extract relevant information from
the texts and manipulate interaction pathways. The system uses Graphviz to
display interactions graphically.

The Bioconductor Graph Project (based on the R statistics language) in-
corporates Graphviz as a rendering module, along with other graph libraries.
The integration of statistical and graph models is a promising area for data
mining and visualization research.

2.3 Internet and Web Structures.

Many internet and web mapping and analysis tools are based on graphs. In
the area of web structure, a central effort of the World Wide Web (W3C)
consortium is to define a “semantic web” in XML. One of its contributions
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if the RDF (Resource Description Framework) dialect of XML which for-
mally describes web site contents. RDF models naturally give rise to graphs.
IsaViz and FRODO RDFSViz are translators which map aspects of RDF
into Graphviz diagrams. Other examples in the realm of web and internet
engineering are Webdiff [5] (for tracking changes in web site contents), the
Apache2Dot translator (for viewing links followed by clients within a web
site), Gnucleus [7] (a visualizer for Gnutella peer-to-peer networks), DNS Ba-
jaj [22] (for viewing and debugging domain name server delegation graphs)
and netmap [34] (for traceroute visualization).

A common technique used in web pages for creating interactive content
based on graphs is to rely on a webdot HTTP server. It is invoked by a
URL which specifies a remote graph file to be retrieved, the Graphviz layout
program to run, and the MIME type of the image to be created. For example,
the line

<img src=/cgi-bin/webdot/tut1.dot.neato.png>

in a web page indicates that the graph described in tut1.dot should be
drawn using neato and the output should be in PNG format. In addition
to providing inline images, if a node or edge in the graph specifies a URL
attribute, the corresponding image will act as a link to that URL. This type
of web service followed naturally from the basic stream orientation of the
Graphviz software.

Histograph is an application of Dynagraph that displays a nonlinear web
click history graph for Microsoft Internet Explorer. In the conventional linear
history view of most browsers, it is difficult or even impossible to understand
branching URL visit structures. Histograph instead makes a map of the pages
visited by the browser using nodes in a graph. As the user follows links in the
browser, Histograph dynamically adjusts the map, and the user can easily
jump to any previously explored page by clicking on its node in the map.
Histograph is a concise C++ program that passes events between the Internet
Explorer and Dynagraph components of the application.

Histograph was created with Montage, a generic OLE client-server module
for integrating Dynagraph (or other applications) with Microsoft OLE-aware
Windows programs. Montage supports user interface modes (collections of
behaviors), event management and persistence of non-hierarchical collections
of objects to enable state file saving and loading and cut-and-paste operations.
Its generic features enable the creation of sophisticated applications. Beyond
the Histograph demonstration, it supports general embeddable diagrams, and
Visual Basic programming with graph diagrams.

2.4 Dynamic Distributed Communication Services.

Distributed Feature Composition (DFC) is an architecture for specifying the
structured composition of modular communication service features. DFC ap-
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pears to solve many of the difficulties that have been encountered in spec-
ifying telecommunication services. Of principal concern here, it models the
invocation and interaction of communication services as an evolving graph
of feature boxes. Building Box [2] is a platform for applying DFC to Inter-
net Protocol services. An extension of Graphviz was created to monitor and
validate service protocols and feature setups in real time. In particular, DFC
models are naturally represented as a set of boundary nodes surrounding a
cloud of internal feature nodes, and drawn using a modified spring embedder.

3 Algorithms

The algorithms forming the fabric of the Graphviz software range from stan-
dard graph and graph drawing algorithms, implemented for robustness and
flexibility, to novel variations of standard algorithms or standard algorithms
used in novel ways. It seems most natural to describe these techniques in the
context of the graph drawing model where each is used, saving those serving
multiple models to the end.

3.1 Static layered drawings

For layered drawings, Graphviz relies on an implementation of the Sugiyama-
style approach as described in Section 4.2 of Chapter 2. As with all Graphviz
drawing tools, the design goal is to make aesthetically pleasing drawings of
modest-sized graphs approaching the quality of hand-made diagrams. We
concentrate here on the aspects where the Graphviz implementation differs
significantly from the description in Chapter 2.

Ranking. The first major pass in creating a Sugiyama-type layout is to place
nodes on discrete ranks, honoring the direction of the edges. There are many
ways of doing this, depending on which aspects of the ranking are deemed
most important. Graphviz models node ranking as the following linear integer
program:

minimize
∑

(u,v)∈E

ω(u, v)(yu − yv) (1)

subject to yu − yv ≥ δ(u, v) for all (u, v) ∈ E (2)

where yu denotes the rank of node u and hence is a non-negative integer, and
δ(u, v) is the minimum length of the edge. By default, δ is taken as 1, but the
general case supports flat edges, when the nodes are placed on the same rank
(δ = 0), or the times when it is important to enforce a greater separation
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(δ > 1). The weight factor ω(u, v) allows one to specify the importance of
having the rank separation of two nodes be as close to minimum as possible.

Using this criterion for placing nodes on ranks has the effect of reducing
the total length of all the edges where, in this context, the length of an edge
is the difference in ranks of its endpoints. This is important from an aesthetic
and cognitive sense, since it is generally agreed that having short edges in
the drawing of a graph is important. This approach also has the practical
effect of reducing the number of artificial nodes introduced for the remainder
of the layout. As the time to finish the later phases is strongly influenced by
the number of nodes, real and artificial, anything that reduces the number
of artificial nodes needed can have a beneficial effect on performance. On
the other hand, for shallow but wide hierarchies, minimizing the total edge
length, or the number of ranks, can lead to a layout with a very poor aspect
ratio. This can be overcome by the use of additional constraints, such as
adding invisible edges between nodes which would normally be placed on the
same rank.

Despite the proposed advantages of using the integer program (1-2) to
determine ranks, if one could not solve it efficiently, it would not be worth-
while. Fortunately, the problem allows many polynomial-time solutions. Since
its corresponding constraint matrix is totally unimodular, a rational solution
obtained from a network flow formulation or the basic linear program is
equivalent to the desired integer solution.

Here, we describe the network simplex algorithm used in Graphviz. We
expand the notion of ranking to be any assignment of y coordinates to the
nodes. A feasible ranking is one satisfying the length constraints (2). Given
any ranking, not necessarily feasible, the slack of an edge is the difference of
its length and its minimum length. Thus, a ranking is feasible if the slack of
every edge is non-negative. An edge is tight if its slack is zero.

A spanning tree of a graph induces a ranking, or rather, a family of equiv-
alent rankings. (Note that the spanning tree is on the underlying unrooted
undirected graph, and is not necessarily a directed tree.) This ranking is gen-
erated by picking an initial node and assigning it a rank. Then, for each node
adjacent in the spanning tree to a ranked node, assign it the rank of the
adjacent node, incremented or decremented by the minimum length of the
connecting edge, depending on whether it is the head or tail of the connecting
edge. This process is continued until all nodes are ranked. A spanning tree is
feasible if it induces a feasible ranking. By construction, all edges in a feasible
tree are tight.

Given a feasible spanning tree, we can associate an integer cut value with
each tree edge as follows. If the tree edge is deleted, the tree breaks into two
connected components, the tail component containing the tail node of the
edge, and the head component containing the head node. The cut value is
defined as the sum of the weights of all edges from the tail component to the
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head component, including the tree edge, minus the sum of the weights of all
edges from the head component to the tail component.

Typically (but not always, because of degeneracy) a negative cut value
indicates that the weighted edge length sum could be reduced by lengthening
the tree edge as much as possible, until one of the head component-to-tail
component edges becomes tight. This corresponds to replacing the tree edge
in the spanning tree with the newly tight edge, obtaining a new feasible
spanning tree. An example of this interchange is given in Figure 1. The graph
has 8 nodes and 9 edges, the minimum edge length is 1, and non-tree edges
being dotted. The numbers attached to tree edges are the cut values of the
edge. In (a), the tree edge (g, h) has cut value -1. In (b), it is removed from
the tree and replaced by edge (a, e), strictly decreasing the total edge length.
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Fig. 1. A step in network simplex

It is simple to see that an optimal ranking, in the sense of the integer
program (1)-(2), can be used to generate another optimal ranking induced
by a feasible spanning tree. These observations are the key to solving the
ranking problem in a graphical rather than algebraic context, as described in
Algorithm 1. Tree edges with negative cut values are replaced by appropriate
non-tree edges, until all tree edges have non-negative cut values. The resulting
spanning tree corresponds to an optimal ranking.

For further discussion of the termination of the network simplex algorithm
and optimality of the result, as well as implementation tricks, the interested
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Algorithm 1: Network simplex
Input : Directed acyclic graph G = (V, E)

Output: Optimal ranking of V

Create initial feasible spanning tree T
while edge e ∈ T has negative cut value do

Pick edge f ∈ E\T with minimum slack
Set T = T ∪ {f}\{e}

end

reader is referred to the literature, e.g., Cook et al. [9], Chvatal [6] or Gansner
et al. [16].

Coordinate assignment. As noted in Chapter 2, the assignment of y coor-
dinates for top-down drawings is basically trivial. On the other hand, picking
good x coordinates in order to minimize edge bends and obtain a compact,
neat layout takes some work. We attempted to use heuristics similar to those
used for crossing reduction, but the heuristics became increasingly complex
and started to interfere with each other. It was then recognized that we could
again model node placement as a non-linear integer program:

minimize
∑

(u,v)∈E

Ω(u, v)ω(u, v)|xu − xv| (3)

subject to xa − xb ≥ ρ(a, b) for all a and b

where a is the left neighbor of b on the same rank.

In this program, ρ(a, b) gives the minimum horizontal separation of a and b,
which is usually taken as the sum of half their respective widths, plus some
constant internode spacing. Ω is an additional weight function favoring the
straightening of long edges. Specifically, Ω is greatest where both vertices are
artificial, less when only one vertex is, and least when both vertices are real.

A standard transformation in linear programming introduces additional
variables to remove the absolute value. Graphically, this corresponds to cre-
ating a new graph G′ as illustrated in Fig. 2. (For this presentation, we are
ignoring flat edges in G.) The new graph has the same vertex set as G plus
a new vertex ne for each edge. There are two kinds of edges in G′. The first
class is defined by creating two edges eu = (ne, u) and ev = (ne, v) for every
edge e = (u, v) in G. These edges have δ = 0 and ω = ω(e)Ω(e), and thereby
encode the cost of the original edge. The other type of edges separates adja-
cent nodes on the same rank. If v is immediately to the left of w on its rank,
we add an edge f = e(v,w) to G′ with δ(f) = ρ(v, w) and ω = 0. Note that
this edge will not effect the cost of the layout.
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Fig. 2. Constructing G′

With this construction, solving the original optimization problem becomes
equivalent to finding an optimal ranking in the derived graph G′, and we can
just reuse the network simplex algorithm.

This formulation has an additional advantage. By appropriately setting
the minimum edge lengths, rather than using the default of 0, the derived
graph can encode horizontal shifts in edge endpoints to allow node ports.
This enables the drawing of arrows between fields in records, as shown in
Fig. 3.

left middle right

 b   y  d

 x   z  

 c  

Fig. 3. Records, fields and node ports

If e = (u, v) is an edge, let ∆u and ∆v be the desired horizontal displace-
ments for the edge endpoints from the centers of u and v, respectively. A
negative ∆ corresponds to the port occurring to the left of the vertex center.
We can then modify the optimization problem (3), making the cost of an
edge Ω(e)ω(e)|xu −xv + de|, where de = |∆v −∆u|, and with δ(eu) = de and
δ(eu) = 0, assuming without loss of generality that ∆v ≥ ∆u. By applying
the construction for G′ and using network simplex, we end up with desired
horizontal coordinates and port displacements.
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Edge drawing. As a final step, chains of artificial nodes are used to guide
the construction of splines, which then replace them. Although we use some
special techniques for layered graph, in particular to handle parallel and flat
edges, the essence of the approach used in Graphviz will be described below
in Section 3.4 concerning the spline path planner.

3.2 Virtual Physical Layouts

For so-called symmetric layouts,1 Graphviz provides two algorithms using
virtual physical models. One is an implementation of the Kamada-Kawai
spring layout algorithm [25]. This is basically a variation on the multidimen-
sional scaling algorithm devised in the statistics community in the 1950’s
and 1960’s, and was first proposed as a graph layout algorithm by Kruskal
and Seery [27] in 1978. In addition to the standard model using path lengths
in the graph for the difference matrix, our implementation also provides a
circuit model based on Kirchoff’s laws suggested by Cohen [8]. This encodes
the number of paths between two nodes in the distance calculation, and has
the effect of making clusters tighter.

A second symmetric layout is provided which implements several of the
spring-based force models described in Chapter 2. For large graphs, it relies
on dynamic bins, an extension of the technique proposed by Fruchterman and
Reingold [14], to approximate long distance repulsive forces, thereby reduc-
ing the running time to roughly linear. In addition, it supports hierarchical
clustered graph using recursion.

Removing node overlaps. Virtual physical layout solvers usually assume
that nodes are drawn as points and edges as straight lines2 Problems arise
if nodes are drawn as shapes having area, because they often overlap other
nodes and edges. If the graph is large or the intention is to just see the
“shape” of the graph, such node overlaps are unimportant. For small to
medium graphs, however, the user typically does not want nodes occluding
each other.

Graphviz has three optional strategies for removing node overlaps. One
eliminates them by uniformly scaling up distances between node centers while
retaining node sizes [30]. This preserves overall relationships between nodes,
but can waste considerable area. A second approach is the force scan method
[31] of Misue et al. Here, the layout is searched by horizontal and vertical
scan passes, and rigid translations of subsets of nodes are performed in the

1 In the vernacular, not mathematical sense.
2 Incorporating node size into the model without introducing new problems such as

overconstraining the layout is a subtle problem (cf. [19]). We have implemented
some of the algorithms in the literature which include node sizes as part of the
model, and have found that there are situations where overlaps can still occur.
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scan direction to remove overlaps. This preserves orthogonal ordering while
usually, but not always, requiring less space than scaling.

The third technique (Algorithm 2) is a more sophisticated iterative heuris-
tic using Voronoi diagrams, based on work by Lyons et al. [29]. The rationale

Algorithm 2: Voronoi adjustment
Input : Layout of vertex set V

Output: New layout of V such that v ∩ u = ∅∀v, u ∈ V

Construct bounding rectangle containing all nodes
Let C be the number of intersecting pairs of vertices
while C > 0 do

Construct Voronoi diagram using vertex centers as sites
Clip unbounded cells to bounding rectangle
Move each vertex to the centroid of its cell
Let C′ be the new number of intersections
if C′ ≥ C then

Expand bounding rectangle

end
Let C = C′

end

behind this technique is that moving a node in its Voronoi cell is still closer
to its previous position than any other node is, helping to roughly maintain
the layout’s shape. This method requires the least amount of extra space, but
is much more destructive of the shape of the graph and the relative positions
of the nodes.

In the implementation, node overlap is computed at the polygon level
using a simplified version of the linear algorithm described in O’Rourke [33],
preceded by a quick bounding box check. Non-polygonal nodes are approxi-
mated by polygons, typically using around 20 sides. In addition, the polygons
are scaled up slightly to guarantee that on termination, there will be a clear
positive distance between nodes. We use Fortune’s O(nlogn) sweepline algo-
rithm [12] to compute Voronoi diagrams.

Several characteristics of this heuristic deserve further investigation.

• Counterintuitively, it runs faster while producing comparable layouts
when all the nodes are moved on every iteration, instead of only moving
overlapping nodes.

• It ignores edges. Better layouts could probably be made by incorporating
edge information, for example, as part of the original layout.

• Unnecessary distortion of the graph’s original shape occurs because the
procedure expands the graph to fill the bounding rectangle. It would be
interesting to try different bounding polygons, such as convex hulls or
star-shaped outlines.



Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools 11

Once node overlaps are removed, the user has the option of avoiding
node-edge overlaps by invoking a spline path planner module, as described
in Section 3.4; edge-edge intersections are not considered.

3.3 Radial layout

Graphviz also provides an implementation (Algorithm 3) of a radial layout
based on an algorithm of Eades [11] previously adapted by Wills [37]. Given a

Algorithm 3: Radial layout
Input : Graph G, vertex c ∈ V , S > 0

Output: Radial layout of G with c in the center

Construct rooted spanning tree T with c as root
foreach v ∈ V do

Let sizev be the number of leaves in subtree of T rooted at v
Let parentv be the parent of v in T
Let distv be the path distance of v from c

end
anglec = 2π
foreach v ∈ V do

p = parentv

anglev = (anglep · sizev)/sizep

end
θc = 0
foreach v ∈ V do

if v == c then
Θ = 0

else
Θ = θv − anglev/2

end
foreach child w of v ∈ T do

θw = Θ + anglew/2
Θ = Θ + anglew

end
end
foreach v ∈ V do

H = S · distv

xv = Hcos(θv)
yv = Hsin(θv)

end

center node c, the spanning tree is constructed such that, for each node v, the
path from v to c in the tree is a shortest path in G. This algorithm is extremely
fast, and works well with large graphs, typically representing nodes as points
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and encoding additional attributes by color. A drawback of this layout is that
the effectiveness of the diagram is very dependent on the choice of the center
node. If the user does not supply a center, the implementation picks a “most
central” node, i.e., one whose shortest distance to a leaf node is maximal. If
there are no leaf nodes, a node is picked at random. This procedure is not
unreasonable, since these types of radial layouts, especially if the graph is
large, are only effective if the input graph is tree-like with low edge density.

3.4 Utility algorithms

Graphviz implements several general-purpose geometric algorithms to handle
tasks which arise in almost all layouts. We discuss two of these here.

Spline path planner. Both for reasons of aesthetics and clarity, Graphviz
gives the user the ability to draw edges as smooth curves. To accomplish
this, we have implemented a general-purpose spline path planner, which will
construct a spline curve between two points while avoiding nodes.

The spline path planner is a two-phase heuristic, as given in Algorithm 4.
The procedure starts with the desired endpoints of the edge, typically clipped
to the boundary of the node shapes, and a polygonal region. The polygon
need not be simply connected. The polygon will usually contain at least the
nodes of the graph, but may be modified further to additionally constrain the
path. The first phase determines a shortest path connecting the two endpoints
in the visibility graph of the vertices of the polygon. With a running time of
O(n3) for the visibility graph computation, where n is the number of polygon
vertices, this is only practical on modest-sized graphs.

Algorithm 4: Path planning heuristic
Input : Polygonal region P , points s and t in P

Output: B-spline C connecting s and t with C inside P

Construct visibility graph V G induced by s, t and the vertices in P
Find a shortest path L connecting s and t in V G
Construct Bezier curve C connecting s and t and fitting L
if C ∩ ext(P ) 6= ∅ then

Adjust initial and terminal tangents
if C ∩ ext(P ) 6= ∅ then

Pick v on L furthest from C
Replace L by the two paths [s, v] and [v, t] and recurse

end
end

The second phase takes this piecewise-linear shortest path L connecting
the two given endpoints and fits a candidate curve C to the path using the
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algorithm of Schneider [18]. If the resulting curve remains on or within P ,
we are done. If not, we perform small adjustments to the tangents at the
endpoints, bowing or flattening the curve, and stop if any of these variants
work. If none do, we continue by recursion. This is done by picking a point v
on L furthest from C, dividing the path at this point into two paths L1 and
L2, and solving the each path separately. We maintain tangent information
at v in order to combine the two solutions into a single B-spline that is
C1-continuous.

Note this technique offers no guarantee that the resulting spline topo-
logically matches the original path, or that any of the path points except
the endpoints are included. Our rationale is that the topological equivalence
condition is difficult to check and is not usually a problem in practice, and
forcing intersection with the path points often causes unwanted inflections in
the curve.

In certain situations, the time for the first phase can be significantly
improved. If we can guarantee that the polygon is simply connected, we
can construct a shortest path using the “funnel” algorithm of Hershberger
and Snoeyink [20] in time O(nlogn). This is usually the case in hierarchical
layouts, where it is easy to specify the polygonal region as the union of a set
of contiguous, isotropic rectangles.

The spline router fits only one edge at a time; unwanted edge-edge in-
tersections or tangencies can arise in routing multiple edges serially, whether
between the same or different endpoints. To obtain effective global routing,
the calling code needs to tailor the set of obstacles for each edge. Even when
this is done, the splines created will typically be affected by the order in which
they are created. One reasonable convention is to construct the shorter edges
first.

Packing disconnected graphs. Most graph layout algorithms assume that
the graph is connected. Given a disconnected graph, one can either apply the
basic algorithm to each connected component and then arrange the com-
ponents, or make the graph connected. The first approach is used by the
Graphviz hierarchical layout. It aligns the highest rank of each component
on a single line, as long as no additional rank constraints have been spec-
ified. By default, our implementation of Kamada-Kawai takes the second
approach, setting the desired distance between every pair of nodes in sepa-
rate components to L/(|E|+

√
|V |+1), where L is the sum of the lengths of

all edges. This is large enough to guarantee that disjoint components do not
overlap. Neither of these particular solutions is ideal, the former producing
poor aspect ratios when there are many components, while the latter, though
producing an attractive layout of central large galaxies surrounded by a ring
of smaller systems, wastes a great deal of space.

To avoid these situations as well as to provide a general-purpose technique
for combining disconnected graphs, Graphviz has a graph packing library
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based on the polyomino packing algorithm [13] of Freivalds et al. There is an
additional benefit of using this approach with Kamada-Kawai, as its basic
algorithm has O(n2) complexity. If the graph is of medium size, say around
1000 vertices, but with many small components, applying it to each compo-
nent and then packing the layouts together can improve the layout time by
several orders of magnitude.

3.5 Dynamic k-layered drawing

While batch layout suffices in many applications, there are others when
graphs are intrinsically dynamic and layouts need to be changed incremen-
tally. For example, in an interactive graph editor, users edit graphs with an
expectation of layout stability, or perhaps manually adjust the placement
of some graph objects while others are being managed automatically. This
becomes critical in the context of browsing huge graphs, where the user will
need to view adjustable subgraphs or abstractions of a graph through a series
of incrementally generated views.

It is possible that, when a small change is made to a graph, a static layout
could be replaced, perhaps with the aid of some animation, by a new layout,
provided the algorithm is stable under small changes. Typically, though, static
algorithms are designed to perform global optimizations, and small changes
in the graph can produce dramatic changes in the layout. The central prob-
lem, then, is how to make dynamic graph layouts which present readable,
aesthetically-pleasing layouts, at each stage close to what one would obtain
from a static algorithm, while highlighting changes and preserving a human’s
sense of context.

Dynagraph serves as the incremental version of Graphviz. The algorithms
maintain a model graph with layout information, and accept a sequence of
insert, modify or delete subgraph requests, with the subgraphs specifying the
nodes and edges involved. The algorithms then adjust the model graph to
reflect the layout changes, and generate a sequence of corresponding change
messages by which the application can alter its version of the graph.

To give a flavor of the algorithms in Dynagraph, we focus on its incre-
mental version [32] of a Sugiyama-type layout. This is a good example, since
the standard static layout consists of 3 phases, with each phase performing
a global optimization and with the output of one phase highly dependent on
its input from the previous phase. After preprocessing the change sequence,
handling requests which can be folded or canceled, the incremental layout
still relies on the 3 standard passes.

It first handles ranks, reassigning levels to the nodes to maintain the hi-
erarchy, preserve stability, and minimize total edge length, prioritized in that
order. It employs the same network simplex algorithm used in the static case
(Section 3.1), but with additional constraints to enforce stability. The added
variables and constraints penalize level assignments by their variance from
some given assignment, usually the previous layout. Adjusting the penalty
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edge weights changes the tradeoff between minimizing edge length and main-
taining geometric stability. Note also that there is no attempt to check for
cycles in an earlier pass; when an edge causing a cycle is encountered during
ranking, the edge will be reversed.

After all nodes have been assigned a new rank, the algorithm updates
the configuration, converting long edges into chains of nodes as usual. It
first moves the pre-existing nodes or node chains to match the new ranks
just assigned. Then it moves edges by moving the chains to the new ranks,
lengthening or clipping them as necessary.

At this point, the model graph has incorporated all of the requested
changes. However, as might be expected, the edges in the layout probably
have more crossings and bends than necessary. The next step is to reduce edge
crossings. To do this, the algorithm identifies the neighborhoods of nodes and
edges where insertion or modification have taken place, and applies a variant
of the static crossing reduction heuristic to them. Aping the static case, the
heuristic relies on multiple passes up and down the neighborhood, applying
the median heuristic (Section 4.2 of Chapter 2) and local transpositions.

As in the static algorithm, the final pass involves computing the hori-
zontal coordinates of the nodes. It again follows the static algorithm used
in Graphviz, encoding the coordinates in an integer program which is solved
using network simplex. As with ranking, the static constraints are extended
and the objective function is modified to penalize changes from the current
configuration.

Once all nodes are repositioned, the algorithm recomputes edge routes as
necessary. Of course, new edges must always be routed, and existing edges
are rerouted if an endpoint has moved, or the edge passes too near another
node or edge. Edges are routed and drawn using the Graphviz path planner
(Section 3.4).

4 Implementation

The design and implementation of Graphviz reflect the age of the software,
with much of the core written in the early 1990’s. Most of Graphviz is writ-
ten in C, as it predates stable, efficient or portable implementations of C++

and Java3. The supporting libraries consist of some 45,000 lines of code, but
two-thirds of that comes from our use of the GD graphics library [3]. The
hierarchical layout requires about 6,000 lines; Kamada-Kawai, 3700; spring
embedder for compound graphs, 2500; and radial layout, 400. The lefty graph-
ical editor [26] is written in about 16,000 lines, with an additional 3000 lines
of lefty script to tailor it for displaying and editing graphs.

The Graphviz design incorporates an interface level amenable to stream-
processing filters for use with scripting languages. Though a library API as
3 If the choice had to be made now, the same decision might be made for the same

reasons.
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well as interactive GUI interfaces are necessary and provided, we believe a
well-designed scripting interface can greatly magnify the usefulness of soft-
ware. A consideration of the many applications in which Graphviz tools have
been used (cf. Section 2, Section 5 and [17]), and the simplicity of creating
them, bear this out. Here, we mention a simple example. The hierarchical
layout program draws disconnected graphs by placing the top rank of each
component on the same rank. If there are a great many components, this
produces a very wide but very shallow drawing. If this is unacceptable, a
simple solution is to stream the graph into a tool that decomposes the graph
into a stream of connected components, which in turn is fed into the layout
program. This will layout each component, generating a stream of positioned
graphs. This stream can then be fed into a packing filter, which combines
each of the individual layouts into single layout with a much better aspect
ratio. Finally, this graph can be piped into a tool which renders the drawing
in the desired output format.

Another aspect that distinguishes the Graphviz software is its emphasis
on providing the user with a rich collection of graphical primitives and out-
put formats. Implementing various layout styles in order to view a graph’s
abstract features and topology is not enough. Graphviz was engineered to
produce concrete pictures, in which the user has a wide choice in how se-
mantic information and contextual attributes can be encoded. There are 24
basic node shapes, with most shapes having additional attributes for further
customization. Nodes can also be drawn as records (see Fig. 3), basically
rectangular arrays of text useful for representing data structures, or from
user-supplied bitmaps or PostScript code. The user can chose from about
20 different arrowhead shapes, a variety of line styles for edges, most stan-
dard font formats such a Truetype and PostScript fonts, and the standard
RGB and HSV color models. Graphviz also supports about two dozen output
formats.

4.1 Architecture

Graphviz has a conventional layered architecture. At the center are a collec-
tion of libraries. The libgraph library provides the fundamental graph model,
implementing graphs, nodes, edges and subgraphs, along with their related
attributes and functions for file I/O. In turn, this library is built on Vo’s libcdt
[36] for the underlying set operations implemented as splay trees. Auxiliary
libraries include the spline path planning library (Section 3.4); a version libgd
of the GD library, which allows Graphviz to provide bitmap output in many
standard formats as well use of the Freetype font engine; and a library for
splitting graphs into connected components, and later combining the draw-
ings of components into a single drawing.

At the next level, we have a core graph drawing library. This encapsulates
the common parts of all layout algorithms, reading graph input, setting up the
common data structures and attributes and, at the end, providing the drivers
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for the two dozen or so output formats supported by Graphviz. Parallel with
the core drawing library are the libraries coding each of the layout algorithms.

The next layer consists of the stand-alone programs. With the given li-
braries, these are basically just a main routine, which processes the command
line flags and arguments, and then calls the appropriate library routines to
read, layout and render a graph.

The top layer of interactive graph viewers and editors are built, in the
main, from generic language and graphical interfaces [26,28], using the Graphviz
layout programs as co-processes.

Dynagraph forms a parallel collection of layers for iterative graph layout
algorithms. Most of Dynagraph is written in C++, and makes extensive use
of C++ templates for code reuse. At the lowest level, Dynagraph creates a
C++ API for libgraph. Higher layers define algorithms which produce standard
layouts such as hierarchical and symmetric drawings, but rely on incremental
techniques so that small changes to a graph produce small changes to the
drawing. For Dynagraph, software to render graphs in a variety of concrete
formats is unimportant. Rather, Dynagraph defines a graph editing protocol
[32], which can be used by an application to feed incremental graph changes
to the Dynagraph layout engines and, in return, receive descriptions of the
incremental changes required in the drawing.
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5 Examples

Fig. 4. Information visualization with graph drawings on a 10 megapixel display
wall. The displays include maps of virtual private networks, a section of the public
Internet, and software engineering diagrams. The visualizations are an important
complement to conventional text and statistical displays for exploring large, semi-
structured information sets
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Fig. 5. Sample Histograph session. The right pane is a web browser; the left pane
is a clickable history of the pages visited which is extended incrementally. The
application illustrates integration of dynamic graph layout with other interactive
tools

Fig. 6. Internet traceroute map viewer (courtesy of David Dobkin and John
Mocenigo). The viewer plays an animation of routes from about 100 traceroute
servers worldwide to a predefined list of target hosts. The routes are collected
daily. The user interface is based on Grappa, the Java client from Graphviz, with
added controls for animation playback and graph search
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Fig. 7. Views from the IsaViz and RDFSViz RDF visualization tools (courtesy
Emmanual Pietriga, W3C, and Michael Sintek, FRODO project at DFKI Kaiser-
slautern, respectively). IsaViz (a) is an RDF browsing and authoring tool which
includes a 2.5D viewer based on the Xerox Visual Transformation Machine and is
built on the Jena Semantic Web Toolkit from HP Labs and the Xerces XML parser
from the Apache XML project. RDFSViz (b) is a schema ontology visualization
tool built on the Java RDF API from Sergey Melnik at Stanford University and
Xerces. It has become part of a related tool, OntoViz, from the Stanford Medical
Informatics project Protege 2000, with more than 5000 registered users
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Fig. 8. PubGene provides web access to gene co-citation graphs for papers on
rat, mouse and human genetics. Two genes mentioned in the same paper are con-
nected by an edge. The project was created by a collaboration between the De-
partment of Computer and Information Science and the Department of Physiol-
ogy and Biomedical Engineering, Norwegian University of Science and Technology,
Trondheim, Norway, and the Department of Tumor Biology, Institute for Cancer
Research/Norwegian Radium Hospital, Oslo, Norway. It is now commercially sup-
ported by PubGene AS, Oslo, Norway
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6 Software

The Graphviz software is freely available under an open source license. It is
available at www.graphviz.org and at www.research.att.com/sw/tools/
graphviz. In addition to software, the latter site also provides documenta-
tion, sample layouts and links to various sites describing libraries or packages
incorporating uses of Graphviz.
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